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CHAPTER |

THE NEGLECT OF QUANTITATIVE SYNTHES!S IN

FEEDBACK CONTROL THEORY

1.1 introduction

The flight control problem is one of regulation and control despite
parameter uncertainty and disturbances. The pilot has a number of control
variables (elevator, aileron angles, etc.) available. The mathematical
relations between these control inputs and the output variables he wishes to
control, are highly nonlinear. The parameters are functions of Mach (M) and
dynamic pressure (N) and are not precisely known even if M and N are
accurately measured. In addition, his objectives are not always the same.
For example, in the longitudinal mode he is primarily interested in accelera-
tion when violently maneuvering, and in pitch angle when aiming at a target.
Wind gusts are external disturbances whose effects must be controlled.

There is no complete synthesis theory as yet for this problem. Classical
linear time-invariant feedback theory (Nyquist and Bode plots, root locus,
etc.) has been a useful tool based, of course, on the highly approximate
linear time-invariant model. Describing function theory has been helpful for
the stability problem. But these tools are obviously far from satisfactory.
They must be accompanied by extensive simulation and cut and try modifications.

They have worked because of the ingenuity of practical designers and the

inherent power of feedback, but a great deal of cut and try design is essential.

Certainly, in this field, theory has lagged far behind practice.

~1-
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1.2 A Quantitative Problem

A primary reason for this sad state is due to the almost total neglect

of a quantitative feedback synthesis theory. After all, feedback is used to

achieve desired outputs despite uncertainty. Should not the extent of the
uncertainty enter into the design? For example, suppose the plant (constrained
part of the system) has the transfer function

k

1
3 , (1.1)

s° + Als + BI

Py(s) =
with uncertainties in k,A,B given by
kI e [t,10], Al e [-2,4], BI e [2,8] . (1.2)

Suppose that in a completely different problem, the plant Pz(s) has exactly
the same form but with k, € [(8,10], A, € (2,31, B, € {4,6] . Suppose also
that the output performance tolerances are the same for both, e.g., the
system step response must lie within the solid line bounds shown in Fig. 1-1,
for all plant parameter values in the above intervals. Common sense suggests
that the two designs should be significantly different. There is much more
uncertainty in the first plant. The ""amount of feedback'' it needs should
certainly be much more than in the second problem. But classical design
theory ignores this problem. One presumably emerges with the same design for
both problems. 1t is as if the mere use of feedback suffices to scare both
plants into the desired behavior.

Consider a variation of the above problem. Suppose the uncertainties
of the two plants are the same, but the output tolerances are different;

e.g., for one (a) they are the dashed-line bounds in Fig. 1, and the solid

ones for the other (b). Common sense suggests that design (a) should need
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less feedback and therefore be more economical in some sense than design (b).
However, again classical feedback theory cannot cope directly with this

problem except by cut and try, because it has no quantitative design techniques.
Modern state~variable design theory also ignores this quantitative protlem.

1t too has concentrated on design to achieve a desired output for a fixed,
known plant transfer function. 1t offers no design technique for the above
problem of Fig. 1, and this includes the recent work on robust design. It

too must resort to cut and try.

This is indeed a very sad situation. Feedback is used primarily to
achieve desired output tolerances despite uncertainty. But the extent of
the unce}tainty and of the tolerances do not appear at all as design parameters
in the vast majority of the synthesis'theories. Thousands of papers and hun-
dreds of books have been written on the subject, but one hardly finds anywhere
a quantitative problem statement. By this is meant a quantitative statement
of the uncertainty as in Eq. (2), and a quantitative output tolerance statement
as in Fig. 1. This makes it practically impossible to compare design tech-
niques, especially the so-called adaptive techniques which claim to be superior
to ‘'conventional'' techniques.

However, as described in Chapter 2, quantitative design techniques have
been developed in the last eight years which can cope directly with the
quantitative problem given by Fig. | and Eqs. (1,2). Hence, if one comes
forth with claims for ''superior' design techniques, he should be challenged
to prove his claims quantitatively. He can do this only by applying his
technique to a quantitative problem, and comparing it to a design based on
the methods of Chapter 2. In fact, the references noted there cortain many

design examples, which can be used for this purpose. It is scandalous that




the proponents of ''adaptive' design and of ''modern' design theories have
failed to provide such quantitative proofs of thelr claims.

The quantitative techniques described in Chapter 2 are devoted to single
input-output linear time invariant (l1ti) uncertain plants. This constitutes a
significant improvement over conventional nonquantitative techniques, classical
or modern. But the flight control problem is a multiple input-output nonlinear
problem with large uncertainty, so the methods of Chapter 2 are also inadequate.
However, there have recently appeared two breakthroughs. The first extends
quantitative synthesis rigorously (no approximations) to nonlinear uncertain
single input-output systems. The method is outlined in Chapter 3, and is applied
in Chapter 4 to a single-axis flight control problem. The second breakthrough
extends quantitative synthesis to 1ti multiplie input-output systems with large
uncertainty. |t may be combined with the first breakthrough, to permit quanti-
tative synthesis of highly uncertain nonlinear multiple input-output feedback
systems (Chapter 5 and Appendix 1). The result is a powerful synthesis tool,

ideally suited to the multi-axes nonlinear flight control problem.

»Z

Figure 1-1. Two sets of bounds on step response




CHAPTER 2

QUANTITATIVE FEEDBACK SYNTHESIS THEORY FOR

LINEAR TIME INVARIANT SINGLE INPUT-OUTPUT SYSTEMS

, : 2.1 _Origin and Tools

Modern quantitative synthesis theory is based to a significant extent

on the work of Bode [1] in single-loop amplifier systems. Bode emphasized

that the reason for using feedback was to control the plant sensitivity

function. There is only one in the single-loop system, and it controls the

effect of parameter uncertainty and external disturbances. Bode showed the

central role of the loop transmission function L(s) and intensively

studied the properties of L(s) on the frequency axis, s = jw . Unfortu-

nately, classical feedback control theory and modern control theory even more

. so, have neglected the work of Bode. His contributions are still not

appreciated by most control specialists, especially that the essential price

of feedback is in the bandwidth of the loop. The loop bandwidth may have

to be hundreds of times greater than the control bandwidth, depending on the

extent of uncertainty and the tolerances on the output (recall Chapter 1).

In one extreme (no uncertainty) the loop bandwidth can be zero, i.e. feedback

is not needed at all. In fact, this is a good test of a feedback synthesis

technique: What is the bandwidth of the loop transmission when there is no

uncertainty? |If it is not zero, then the design is not '‘tuned'" to the

specifications and is therefore wasteful in loop bandwidth. It is noteworthy

how the relation of loop bandwidth to sensitivity is neglected in classical

' — control and even more so in modern state-variable design theory. Bode showed

that loop bandwidth reduction is a central challenge in feedback theory, and

is the proper motivation for nonlinear feedback compensation. Thus, an




adaptive technique should justify itself by achieving the same quantitative

tolerances for the same quantitative uncertainty, by means of a slower

(smaller bandwidth) loop transmission.

2.2 Frequency Domain vs. State-Domain

1 It follows from the above that frequency response is a natural tool in
Yinear time-invariant feedback synthesis. There are several reasons.
Numbers 1, 2, 6 apply to system theory as a whole.

(1) The transfer function of a cascade of two blocks Pl(s) , Pz(s)
4 ' is the product P‘Pz(s), with their parameters thus remaining separate.
But the differential equation for their cascade connection is a complicated
mixture of the individual ones, with their respective parameters all mixed
up. |If one wants the product P]Pz(s) to have the properties of some
desired function G(s), and if Pl is fixed P, free, then obviously
Pz(s) = G/Pl(s) is easy to determine. This is not so if the cascade

combination is expressed in differential equation form. Similar properties

apply to other kinds of interconnections.

(2) Desired system properties are relatively easily stated in the '
frequency domain, which is also insensitive to the order of the system.

They are much less easily formulated as coefficients of a differential
equation, whose number and properties are furthermore very sensitive to
system order.

(3) in feedback theory, loop bandwidth is the price paid for sensitivity
reduction, which is a frequency domain parameter. The equivalent in the time
domain is the speed of the impulse response of the loop transmission and this
is very opaque in a state-variable formulation. Integral equations would be

a much more logical time-domain formulation for feedback purposes, but for

the next reason.
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(4) In the problem posed in Fig. 1-1, one wants to control the response

i : -
i R IRV

at every t . The response at t = tl is a function of all ¢t < tl , the

convolution of (uncertain) functions for all t < t . The problem would

not be so bad if onewere interested in only a few t, values, but as noted

it is for all t values. In the frequency domain the analogous problem

S

is to control the response to be within certain bounds (see Section 2.3,

Figs. 2-la,b) for all w, so frequency w replaces time t in the above.
However, the behavior of the function at W) is very loosely linked with
its behavior at all other w values. The constraint of analyticity of the
N . s-domain function is much, much easier to bear than the convolution constraint
in the t-domain.
(5) The nonminimum-phase property, as noted by Bode, is crucial in
- feedback design. It is explicit and obvious in the w-domain, but opaque
and hidden in the t-domain, whether in state-variables or in integral

equation form.

(6) System theory differs basically from physics, chemistry and the

S e g e O e

, special ized engineering disciplines in that it deals with the interconnection
of devices and the overall system properties as functions of the input-output :
properties of the devices. |ts great pride and boast is that it can do
precisely this (i.e., control the system's input-output relations), with no
need for study or even understandfng of the equations and natural laws
governing the mechanisms of these individual devices. The device can have
a thousand internal states but if its connection to the overall system is
via only a single input and a single output, then the system theorist needs

i only the single equation relating these two variables. What is the point of

cluttering up the formulation with the thousand internal variables? The

essence of good engineering is simplicity and economy of representation, in
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order that one may see the forest from the trees. The problems are usually
difficult enough without this unnecessary clutter.

1 (7) 1t has been argued that the state-variable description is more

accurate and fundamental. Obviously, it is more detailed, but why does this ;

make it more fundamental? The latter is a subjective concept related to

one's objectives. As George Zames has noted, that in pursuing this argument i

a quantum mechanical description is far more accurate and '‘fundamental' than

state-variable. :

(8) Much has been made of the concepts of '‘controllability and

Tm

;! observability'" as a justification for the state-variable description and

methodology. But it has been shown [2] that a system can be controllable and

o R - A

observable, and yet is totally inadequate for proper control. Thus, these

. concepts can be highly misleading. Also, it has been shown they are not at
all needed even for what they purport to do, if one formulated the problem
with the concept of uncertainty.

(9) Much has been made of the fact that the Laplace transform is ;

v,

unavailable in linear time-varying and in nonlinear systems, whereas the
state-variable formulation is universal. To this the answer is, '‘So what?"
The objective is synthesis, not mere formulation. Quantitative techniques

with deep insight, for the synthesis of uncertain systems to satisfy quanti-

BEECEEESE e

tative performance specifications, are available in the transform domain,
for linear time~invariant systems. They are not available by state-variable
methods. Of what value is a universal formulation if it cannot cope with
the quantitative uncertainty problem even in its simplest category -- the

) linear, time-invariant one.
= ]

!
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lronically, transform concepts have led to precise quantitative design
techniques for both time-varying and nonlinear systems [3-5]. The application
of such a technique to the flight control problem is, in fact, the main
theme of this report.

It should be emphasized that there are areas in system theory where the
state-variable formulation is the natural one, e.g. in optimal control if
the realistic cost function is indeed a function of all the states. It is
not our purpose to derogate state-variables, but rather to present honestly
the role of frequency response in quantitative feedback theory. In such a
presentation one naturally contrasts it with stale variable theory. At least
our presentation gives detailed arguments, whereas frequency-response is
generally cast aside by state-variable enthusiasts, with hardly any detailed,
reasoned discussion. Also, our argument is not against state-variable

formulation per se, but to the synthesis technique that is used thereafter.

2.3 Translation of Time Domain into Frequency Domain Specifications

In the synthesis techniques listed next, there is always a constrained
Plant which is described by a system of differential equations whose para- é
meters are uncertain, giving a set of plant functions P = {P} . Thus in :
Eqs. (1.1, 2), each parameter combination gives a different P e P . The ¢
same design philosophy can be used for sampled~data systems [6].

The objective is to achieve certain apriori specified performance
objectives ¥ P e P . |If the overall system is to be linear time-invariant
(1ti) even if the plant itself is nonlinear, it can be characterized by its
response to any input, and the step response is very popular because it

combines within it both the fastest kind of input (an abrupt change) and the

slowest (no change). Time domain specifications are reasonable in many cases,




as in Figure 2-la, where the step response is to be inside the bounds
h bl,b2 VP eP , with additional bounds of similar nature on the first and
1.2 T T T T
upper—= == _
bound,l N
b T T N
osf '/ r° .
/ /\lower bound
c(n) ,l / bo
e I -
0.6 [
1 1
|
| !
0.3 F"” II -
‘ ' ]
I
0 21 1 1 i
0 2 4q 6
Time

’ Figure 2-1a. Time domain step response specification.

perhaps higher derivatives. Our design technique is in the frequency-domain,
so we must translate such t-domain bounds into "equivalent' w-~domain bounds
on the system frequency response T(jw) . I|f the system is minimum-phase
(6], |T(jw)| suffices and we restrict ourselves here to such systems.

This translation is, as of this date, an engineering art rather than a
science. Advice on how to translate is scattered in the literature [7-9].
Very good results have been obtained with only moderate effort. We shall
assume in this work that the translation has already been done. It is worth
noting that it has been shown [4] that for minimum-phase systems, time-domain

specifications on the step response and on its derivatives of the following

' nature

b0 < ey <b{(e), T=0,n, te T0,) (2.1)




b
it
kd
4

L5 reege s T

e e e IR 7 SRS e v
TTTTT] T T T TTTTT]
Of——mz==c
N DN :
| \\ N\ B -
8,db NI Tlmox
\ N
-20} —_——
mmi/,,\\
DB L Bz \ i
\\
-40} \ .
\
- \
\
\
-60 1l P viaaal \
| 10
w

Figure 2-1b. Frequency domain specification.

can always be satisfied by means of w-domain bounds of the following nature
B,(w) < [TGw)| < By (w) . (2.2)

Hence, it is guaranteed that there exist w-domain bounds of the form of
Fig. 2-1b, which satisfy time-domain bounds of the form Eq. (2.1).

An example of time-domain bounds and their equivalent w-domain bounds
is shown in Figs. 2-lc,d. Fig, 2-1c also shows the simulation results
obtained from the design, which was incidentally a multiple-loop one (see
Section 2.7), for the structure of Fig 2-13b. Such good correlation between

t and w domain bounds are not atypical,

-11-
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Figure 2-1c. Time domain bounds and design results for
various plant parameter combinations.
|[ 0 100,
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Figure 2- |4, "Equivalent” frequency-domain bounds.
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2.4, The single-loop two-degree-of-freedom system [7]. (Fig. 2-2)

Here the plant output c(t) is assumed measurable and available for
feedback and so Is the command input r(t) . The processing of these two
signals provides two independent compensation functions to the designer.

An infinitude of canonical two-degree-of-freedom structure may be used [6].

The design procedure developed in [7] used Figure 2-2a, but suppose the

t) F G

gi_ c(t

(o)
D

Y F P

o_>—T—->———C‘f o c(h
-H (s) N
(b)

Figure 2-2. Structures of 2~D.0.F. system.

sensor transfer function is H(s) , then one can use Figure 2-2b; letting
G,H {of Figure 2-2b)) = G (of Figure 2-2a)), in order to have the same
- loop transmission function L(s) = GP = GIPH , and FIGI = FG in order to

have the same system transfer function

. F.G,P
Sed - 1o = B - (2.3)

1 +GP I+G|PH




2.4.1 A 2-degree-of-freedom structure with 2-loop implementation

Suppose large loop feedback bandwidth is needed and it is found that an

independent sensor measuring &(t) (e.g., a tachometer in a position servo)

T ———— IR

gives less noise than the differentiation of a position sensor, so both

sensors are used, as in Figure 2~3, with the two sensor transfer functions L

H] ,H2 , and say the structure in Figure 2-3 is used. This is a two-loop

Figure 2-3. 2-loop, 2-D.0.F. structure.

structure physically, but in terms of fundamental feedback design it is a
two-degree-of-freedom system, so the quantitative design theory of Figure 2-2a
is used, giving G and F . It is required that the loop transmission around

P, be the same in both cases, i.e.,

T T Y T TR VIR TERMWLICITIRY 2 -3:mgameys o » L6 1 St S5 310 S W T TR

L = PG (Fig. 2-2a) = P[Ga(H‘ +GbH2)] (2.4a)
and
G, G_P
- GP . _ b a
T = F__—I+GP (Fig. 2.2a} = Fb EL ORI (2.4b)
a‘'l b2
SO
i G = Ga(H‘-+GbH2) , FG = FbiGa . (2. 4c)
N

-14-
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H, s Hy are known, so one must decide how to split G = Ga(Hl4-GbH2) between

Ga and Gb . This is done by considering the effect of sensor noise N' ' Ny

at the plant input, !

G_(H,N, +H,G N,)
a‘ 1T "2%y2 (2.5)

-XN(jw) -

1+P[6_(H, +GH,)]

given that
L . 5
G = 'P‘ (Jw) = Ga (Hl + HZGb) (2.6) ;

is fixed by the quantitative design technique of [7].
oy 12
The objective is to minimize I IXNI dw, subject to the above con-
0

straint. This is a straightforward optimization problem which can be solved
outside the realm of quantitative feedback synthesis. The latter only provides
the design with the feedback loop transmission (L) needed around the plant,

and the prefilter (F) needed to process the command input r(t). The state-
of-the-art in sensors and in filter synthesis determines how L and F are

to be realized. In fact, in the above context one might consider use of an

accelerometer in a 3-loop feedback structure. But from our point of view ! :
the structure remains that of a two-degree-of-freedom system and we shall
continue to associate the latter with a single-loop system. The single-loop
design technique is the basic building block for all the other more complex

structures, so it is next reviewed.

2.4,2 Review of Two-Degree~of-Freedom Quantitative Design Theory

Figure 2-2a is used with T = F 1‘%%5? . It is assumed that the compen-

sation networks, whose power levels can be very low (as the plant contains
the power elements), can be constructed with negligible uncertainty in their

transfer functions. Hence, due to the uncertainty in P ,

......




-9 : -

Lp L -
AlnT:AlnT:—GE-AEnTTf’ L GP (2.7)

and

A gn |T(jw)| = A 2n

l%qff?wf | : (2.8)

Given that the specifications require that AfLn|T(juw)]| < 6ldb at in
Figure 2-1b, what are the resulting constraints on L(jw]) 7 1t is convenient
to pick & "nominal' plant Po(s) , and derive the bounds on the resulting
"nominal" loop function L0 = POG . These bounds can be found by means of

a digital computer, but it is very useful for insight to see it done on the
Nichols chart (logarithmic complex plane with abscissa in degrees, ordinate

in decibels = 2C loglo). The procedure is illustrated for the case

ka

F(s) = ETETFET; k e [1,10], ace [1,10], (2.9)
and say k =1, a =10 are chosen as nominal, giving P, = 10/(s(s+10)).

0
At w= 2 rps, F(j2] lies within the boundaries given by ABCD in Figure 2-4.

Since &rn L = 4n G + &n P, the pattern outlined Ly ABCD may be translated,
but not rotated, on the Nichcls' chatt, the amourt of translation being given
by the value of &n G(j2) . For example, if a trial desigrn of L{j2)

corresponds tc the tempiate P(j2) at A'B'C'D' in Figure 2-4, then

6j2) 4 = (LG, - PGy,

(-2.0) - (-13.C) = 11.0 db

(z.10)

Arg G(j2) = Arg L(j2) - Arg P(j2)
(2.11)

(~60°) - (-153.4°) = 93.4° .
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Figure 2-4. Derivation of bounds on Lo(jw) on Nichols chart.

2.4,3 Bounds on Lo(jw) in the Nichols chart

The templates of P{(jw) are manipulated to find the position of Lo(jw)
which results in the specifications of Figure 2-1b on 2n |T(jw)| being
satisfied., Taking the w =2 template, one tries, for example, positioning
it, as shown in Figure 2-4, at A'B'C'D' . Contours of constant &n|L/(i+L}]|
are availatlie on the Nichols' chart. Using these contours, it is seen that
the maximum change in &n |T| is, in this case, very closely
(-0.49) - (-5.7) = 5.2 db , the maximum being at point C', the minimum

at point A' . Suppose that the specifications tolerate a change of 6.5 db

-17-
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at w =2, so the above trial position of |L°(j2)| {s in this case more

than satisfactory. The template is lowered on the Nichols' chart to A'B''C'D",
where the extreme values of %n|L/(1+L)| are at ' (-0.7 db), A" (-7.2 db).
Thus, if Arg Lo(jz) = -60°, then -4.2 db is the smallest magnitude of

Lo(i2) which satisfies the 6.5 db specification for A &n |T| . Any larger
magnitude is satisfactory but represents over-design at that frequency.

The manipulation of the w = 2 template is repeated along a new vertical

line, and a corresponding new minimum of ILO(j2)| found. Sufficient points
are obtained in this manner to permit drawing a continuous curve of the bound

on Lo(jz) , as shown in Figure 2-4, The above is repeated at other frequencies,

resulting in a family of boundaries of permissible Lo(jw) .

2.4.4 Nature of the bounds on Lo(jw)

A typical set of bounds is shown in Figure 2-5. The bounds tend to
move down in the Nichols chart (become less onerous), obviously because as
w increases, greater change in IT(jw)I is permitted, as in Figure 2-1b,
However, they may cross and even temporarily move up higher with increase
of w. It is in fact essential that at large enough w, the uncertainty
in [T(jw)| (i.e., the bounds on |T(jw)| ) be greater than the uncertainty
in P(jw), because the net sensitivity reduction is always zero in any

practical system as was long ago [1] shown by Bode,

L] [e 2]
f nnls;(jw)I dw = - f 2|1+ L(jw)| dw =0 (2.12)
0 0
where S; = gg/; is the sensitivity function.
In the above examples as w >, P~ E% , so A 2n|P| + A g2n(ka) = 40 db.
s

Note in Figure 2-1b that the permitted A 2njT(jw)| >> 40 db as w > 50 .

~18-
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Figure 2-5. Typical bounds on Lo in Nichols chart.

Such large tolerances on |T(jw)| at large w are tolerable because
|T(jw)| is negligible at large w, e.g., if |P(jw)| can change at most

by 40 db at large w but |T(jw)| changes by 52 db, who cares if this

52 db change is from |T| . = 1078 to IT] pax = 400 x 10°¢ . I return,

one can concentrate the sensitivity reduction over the bandwidth of T(jw) .

Thus, although |P(jw)| in this region varies by say 40 db, [T(jw)| may

be controlled to vary by only U4 db, or 0.04 db if desired.
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2.4.5 universal high-frequency (UHF) boundary

As noted, in the high-frequency range A 2n[T(jw)| must realistically
be allowed to be >> A 2n|P(jw)|, and this is reflected in the bounds on

Lo(jw) tending to a very narrow pencil Bs in the arithmetic complex plane

(if P0 > m;n as s + o) as in Figure 2-6a and as in 2-6b in the Nichols'
s

chart. In Figure 2-6b, the boundary Bg is drawn for the case

?IMAG.

e b AL

REAL

Figure 2.6a. Typical bounds on Lo(jw) in complex plane.

AfnL=42nk=20db, An|T(jw)| =4 an|L/(1+L)] < 23 db at w, -

However, the resulting peak value of |L/(1+L)| is 23 db = 14.1 arithmetic

at k= kmax’ indicating a highly under-damped pole pair at the corresponding




LN h . : .
>

L2 2 T

By - e e e

o . ]
T

frequency with damping ratio & = 0.034, when k = kmax . This tremendous

peaking does not appear in the system response to the command inputs R,

because it Is filtered out by the pre-filter F in Figure 2-2a. But the

system response to a disturbance D in Figure 2-2a, is given by

T --% = (l-!-L)-l . Disturbance attenuation generates its own requirements

1 d
on L, which may lead to more stringent bounds on L than those due to
T(j ) . The final contours used in the design [7] must be the most stringent
20
) 8{
e |
g
€ g
fL|(DB)
‘“-.-\0‘)B
¢P=-60
¢p=-iz0°
-20 m:-2008
. L
m-20loq'o‘ml
L
Pp=are.[ -
-40

-240°  -180°  -120°  -60°
L L {(DEGREE)

R aa -

on Nichols' chart

'
. Figure 2-6b. Bounds on Lg(jw)
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composite of the two. However, even if D is very small, it is usually
certain that a peak |Td| of 14.1 is intolerable. It is reasonable to add
a requirement | Tt—L | <y a constant, for all w and over the whole
range of P parameter values. The resulting constraining contours denoted
by Bh are shown in Figure 2-6b for the case A &n k = 20 db, and for
Yy =2.3,3.5,5db (all those contours are symmetrical with respect to the
vertical Arg L = -180° on the Nichols' chart). If y =5 db is used,
then B(wv) indicates the composite contour shown in Figure 2-6b. For
w > W |& T(jw)| increases while Y remains the same, so that sooner or

later there is reached a frequency uw,a B(w) = Bh(Y) , Yw> w, - This

boundary B, is called the ''universal high frequency" (UHF) boundary.

2.4.6 Th~ optimum L{jw)

It has been shown [10,11] that a realistic definition of optimum in

the 1ti system is the minimization of k, defined by 1limL(s) = ks €,

S >0

where e is the excess of poles over zeros assigned to L(s) .

it has been proven [10,11] that the optimum L 1lies on its boundary
Bi at each w, and that such an optimum exists and is unique. Most
important for the present purpose, is that in significant plant ignorance
problems the ideal optimal L has the properties shown in Figure 2-7, i.e.,
over a significant range it follows Bh along UV up to the point J at
which it abruptly jumps to infinity along WW'W' and returns on the vertical
line YZ, whose phase is (-90°) e . Such an ideal L(jw) is, of course,
impractical. A practical suboptimum L is shown in Figure 2-7.

Some results of a numerical design example are shown in Figure 2-8.

They were derived for the following problem.
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Figure 2-7. Bounds on L and Optimum Ly on Nichols' Chart.

2.4.7. Numerical example. (Figures 2-2a, 2-8, Section 2.6)

. = = ipit
Ky
Plant uncertainty: P, = — » 328w <5

2
ST+ 2€wns +w,

2<uA-€2 <10, 4 <K <1250

n —
Ak
! 2 e i
P2 SIA ’ Il <A<3, IO_<_K2_<_33-3
BK'3 4
| g o2 ' %
P3 ST 10 <B <20, 100_<_K3_<_158 ¥
Performance Specification: Shown in Figure 2-1b, were originally derived E
¥
from time domain bounds [9]. :

Disturbance response: Y<3.0db
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This example is used in Section 2.6 in a demonstration of the advantages of

multiple-loop design.

2.5 Cost of Feedback and Effect of Senscr Noise

in significant plant ignorance problems, there is a strong tendency
for the design to be such that N, in Figure 2-2a, is so highly amplified
as tc saturate the plant input at X . The noise response function is (see

Figure 2-2a)

= -L/P in h.f. range where |[L] << 1. (2.13)

N represents the square root of the noise power spectrum. The noise response
of the numerical design example of the iast section is shown in Figure 2-9.
Notice that the ncise component at x, in Figure 2-2a, is most impcrtant

in the high-frequency range where the useful command and disturbance components,
due to R and L are relatively small, rather thar in the low frequenc¥

range where the latter are relatively large. Hence, it is desirable tc
decrease |L| ve. w, as fast as possitle in the high frequency range.

Ever é saving which is smzll in the logarithmic scale can be significant

in rme sensor noise effect. Reduction in thic 'cost cf feedkback' is the

primary motivation for turning tc multipie-loop design.
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Figure 2-9. Enormous sensor noise amplification in
the single-loop design for Section 2.4.7 example.

2.5.1. Reduction in Cost of Feedback by means of linear time-varying

compensation and nonlinear compensation.

To reduce the hf sensor noise effect, one way is by linear time-
; varying compensation if the problem has time-varying features [12]. Another
is by nonlinear compensation. Actually the so-called '"adaptive' system is
in the category of nonlinear compensation. They may or may not be better

than 1ti compensation in reducing the 'cost of feedback'. |t is noteworthy

and scandalous that in the vast literature on adaptive systems, there is
hardly ever any quantitative comparison between the adaptive design promoted

and a proper 1ti design accomplishing the same design objectives. One could

L4 RN £ 2 BB

excuse this not being done in a general manner, because there is hardly any

\ 'adaptive' method permitting quantitative design in the sense here defined.
LY »
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However, it could at least be done experimentally. Occasionally one sees a
comparison, with an 'ordinary' or so-called ‘classical' design. But the
comparison is usually greatly biased, because generally some very naive 1ti
design is used, and there is no statement of specifications -- even made up
after the fact. There is not recalled a single comparison, on the part of
the proponents of adaptive systems, with the 1ti quantitative design tech-
nique [7] discussed here. Some nonlinear compensation techniques for which
a quantitative design theory exists to a greater or lesser extent have
appeared in the literature [13-17] for which such comparisons are possible.
It is noteworthy that these were expressly motivated by the desire to reduce

the 'cost of feedback', so that such comparisons were a natural by-product.

2.6 Multiple-loop feedback.

Another method of 'cost of feedback' reduction, in the context of 1ti
design, is by means of multiple-loop feedback, restricted to those cases
where an additional plant variable (besides the plant output) are available
for feedback purposes. Such a multiple loop design technique was first
developed [13] for the cascaded structure of Figure 2-10a.

The design example of Section 2.4.7 was done by means of a two-loop
design (n =2 in Fig.2-10). The resulting new outer loop (LIO) is shown
in Figures 2-8, 2-li and is considerably more economical in bandwidth than
the single~loop design (LSO) for the same problem. The effects of the outer
sensor noise NI at the plant input are compared in Fig. 2-12. Note the
tremendous improvement. However, there is now a second sensor with noise
source N, in Fig. 2-10b. Its effect is shown in Fig. 2-12. It can be
reduced by using 3 loops (n =3 in Fig. 2-10}). Compare X/N, for 2 and
3 loop designs in Fig. 2-12. But now there is N3 to consider and X/N3

is shown in Fig. 2-12.
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Figure 2-10b.

The general cascaded feedback structure.
(Constrained plant and sensors in heavy lines.)
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2.6.1. Design perspective

The above results are very impressive. But what is even more impressive
is that a very good approximation to the final multiple~-loop designs and the
sensor noise effects, can be gotten very quickly by means of a technique
called '"Design Perspective' [19,20]. The application of Design Perspective
to the above example is shown in Fig. 2-1]. A detailed design was required
only for the single-loop LSo . The dashed lines show the results using

Design Perspective for - outer loop in 2 or 3-loop design, L, ~first

Y10
inner loop in a 2-loop design, L2b - first inner loop in a 3-loop design,
L3b' second inner loop in a 3-loop design. Note the excellient agreement
between the approximate Design Perspective results and the final detailed
designs. Design Perspective enables the designer to obtain a good under-

standing and perspective of the important design trade-offs quite early in

the game, without the need of a detailed design.

2.7 More Complex Multiple-Loop Structures Including Plant Modification

Systematic quantitative design techniques have &also been developed
[19,20] for the more complex multiple-loop structures of Figures 2-13a,b
denoted as the Triangular and Parallel-Cascade structures respectively.

The results shown in Figures 2-lc,d were obtained for a design example based
on Figure 2-13b with two parallel sections (m = 2) np =3, n, = 1 and

3

Pli = k]i/s for i =1,2,3, P, = k2/s s and very large uncertainties

21
kll ¢ [50,500], k]2 e [20,800], kl3 e [1,60], kz-e [1000,200,000].
The parameter values in the brackets in Fig.fi-lc have been normalized and

are given in the order k12 , kll , kI3 , k2 . Design Perspective has also

been developed for these structures [19,20].
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Plant Modification

!t is noted that in Figures 2-10, 13a,b, esach feedback loop is returned
to the plant input X . No Ffeedback is allowed to any internal plant

~

variablss e.g. from C to C2 or more generaily from any & to Cj ,
J>i and j=2,3,...,n~1 . The reason is that any such internal feedback
constitutes ''plant modification'". The plant has been assembled by its
specialists to deliver some maximum output C and the permissible levels of

C2 = C/Pl , C3 = C/PIPZ"°"Ci = C/Pl°" Pi-l are thereby determined.

Suppose there is feedback from C vis HI to C2 , as shown in the insert

L

in Figure 2-10a. Now X2 =5 (I-+P|Hl) with signal level possibly much
|

greater than the previous C/Pl » which the plant may perhaps not be able
to handle.

We thus assume that the ''feedback specialist' is called in to design
the feedback network around the plant, after the latter has been built by
the ‘'plant specialist''. This is the situation very often in practice. |If
the feedback specialist does his job properly, i.e. achieves the system
response function T(s) within its tolerances ¥ P € P, then the signal
levels inside the plant will be within the values allowed by the plant
specialist, so long as the command input functions r(t) are in the set for
which the system was designed.

Recently, quantitative design has been extended for the first time
[21-2], specifically to the single branch cascade plant, with plant modifica-
tion allowed. Some of the resulting structures are shown in Figure 2-1h.
The degree of modification, in a rms sense, of the internal plant variables
was added as one more design specification, in addition to those listed here.

It was shown that the loop bandwidths can thereby be significantly decreased,
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beyond that possible in '"'no plant modification' designs. This indicates
that in significant plant uncertainty problems, it is definitely advantageous
to have the ''feedback specialist' participate with the 'plant specialist"

in the design of the plant.

2.8 Summary

Some of the principal features of single input-output linear time
invariant (1ti) quantitative synthesis theory for highly uncertain plants,
have been presented briefly in this chapter. It should be clear that a
respectable, mature synthesis theory exists for this class, although much
remains to be done. Numerous quantitative design examples have been executed
together with computer simulations, which have corroborated the design

techniques. The existence of these design examples serve as benchmarks

against which any "adaptive' design with claims of superiority can be checked.

These design techniques can, of course, be applied to the Iti flight control
problem. But what is of much greater importance is the startling fact that
most of these techniques are applicable exactly (no approximations) to linear
time-varying, nonlinear and even nonlinear time-varying highly uncertain

plant problems. This is treated in the next chapter.
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CHAPTER 3

A BREAKTHROUGH IN QUANTITATIVE FEEDBACK SYNTHESIS

3.1 Introduction

Quantitative feedback synthesis in the frequency domain has clearly
shown its value in the single input-output multiple-loop design techniques
for 1ti systems, which were briefly outlined in Chapter 2. However, a
fantastic, hitherto considered impossible achievement has recently been

made [3-5]. 1t has been rigorously proven that these techniques can be

applied exactly to a large class of nonlinear, highly uncertain plants, even

nonlinear time-varying plants. The interesting point is that factors like

uncertainty, synthesis, quantitative design to specifications are generally
considered to make the design problem much more difficult. But it was pre-
cisely the precision and discipline invelved in such strict requirements,
which led to the development of the rigorous nonlinear synthesis technique.
This claim of precise design of nonlinear, uncertain systems seems so

unbel ievable that it is worth repeating that there are no approximations
involved, no linearizations, no describing function type of approximations,

etc.

3.2 Concept of the Linear Time Invariant Equivalent Set (LTIE)

The simple single~loop structure of Figure 3-la is first treated, for
the case of a singie system command input rl(t) . The nonlinear plant w,

with y(t) = w(x(t)), has uncertain parameters, e.g. w is given by

3

¥ + Ay’y + By"signy = Ex (3.1)

with A, B, m, E uncertain in that it is only known that A e [-1,3],
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Figure 3-1a. Single loop feedback system with nonlinear uncertain plant w e W.
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Figure 3~1b. Tolerances on response to 2-unit step command.

Be [2,8], Ee 1,21, me [.3,1.2] . Each combination of possible values
of A,...,m give a different w, thus generating a set W = {w} of
nonlinear plant functions. It is required that in response to command input
r](t), the system output y(t) should be a member of a specified acceptable
set A . For example, if rl(t) is a step function of 2 units magnitude,
the tolerances on the output and its derivative may be as shown in Fig. 3-1b.
Any y(t) which satisfies these tolerances is a member of the acceptable
set A= {a(t)} .

The next step is to find a linear time-invariant plant set P, which
is precisely equivalent to the nonlinear plant set ®, for the purpose of

the synthesis problem. To do this, take any a; ¢ A and any plant wl e W .

Find the input to wl  which gives the output a;, i.e. solve Eq. (3.1) for
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x given y, which in this case is a relatively easy operation. Denote the

resulting x by x# . Now find a linear time-invariant plant P? s, which

J

is equivalent to w” for this special case i.e. the output of P{ is ai(t),

when its input is xf(t) . An easy way to do this is to let

(3.2)

This implies that both a;(t) and x;(t) have Laplace transforms, a condition
that is difficult to violate.

The 1ti P{(s) is precisely equivalent to the nonlinear wl  (from the

input-output viewpoint), only when the input is x{ (22 the output is y = ai)'

Thus, imagine each is put inside separate, externally identical black boxes.
The only measurement you are allowed is to inject an input signal xg(t) .
It will be impossible to say which black box contains the nonlinear wj
and which one the linear Pg

Repeat this operation over all the we W, for the same a; . Then
repeat it for all the a ¢ A, generating a set of {Pg} 2P . For example,
if the set A had 10 elements and W had 20, then the set P would have
200 members. In practice both A and W are uncountable sets and so is P .
The set P is equivalent to W only with respect to the set A . Thus,

for any pair a, € A, w' € W, there exists a P; € P which is equivalent

to w', in the sense that some signal x;(t) must be applied to w" to

“Implicit in this is the assumption that the plant has a unique inverse,
excluding for example hard saturation. In practice, in such cases, one can
model the hard saturation by a very small gain. Actually, the theory can be
expanded to the case where there is no unique inverse but there is a set of
possible inputs giving the same output, providing this set satisfies certain
reasonable conditions.
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give a and if this same ﬂ?gnal is applied to P;, its output is also
a - P is the linear time-i;vgriant equivalent (LTIE) of W, with
respect to A . .

In Fig. 3-la, suppose w (which can be any member of the nonlinear
set W) is replaced by P(s), any member at all of P . Consider the
problem of choosing F,G so as to guarantee that the system output lies
in the OK set A, no matter which P € P happens to be the plant. This is
purely a quantitative 1ti design problem for which the techniques of Chapter 2
may be applicable. Suppose they are, which means that F, G are found such
that the output is in A, no matter which P ¢ P is chosen. Then, under
very general conditions this same F, G compensation pair works for the
nonlinear set W . This means'that no matter which nonlinear plant w e W
is used, the output is guaranteed to be in the OK set A . Functional
analysis techniques are used [3,4] to prove the above, but the design execu-
tion involves simple, direct frequency response techniques, which can be
performed by any reasonably competent feedback design engineer. A brief

outline of the procedure is next presented.

3.3 Outline of Synthesis Procedure for Nonlinear Uncertain Plants

3.3.1 Problem Statement

To simplify the presentation, take an example where the nonlinear plant

is given by the first order equation

y+ay2 =8x; Ae[-1,5], Be [1,10] (3.3)

Thus, the nonlinear plant is clearly '"‘unstable' for a subset of plant parameter

values. Suppose the typical command inputs are steps from kI =] to 5

t

magnitude, and other inputs of the form k,te *- with k, ¢ [1,4],
2 2
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ae [.2,3] . It is desired that the closed-loop system behave like a 1ti

system with transfer function

£
sz+Ks+E

T(s) = E e [16,20] , Ke [9,11] (3.4)

3.3.2 Design Procedure

Take any command input r{t) in the set {k u(t) ,kzte_at} and any
acceptable T(s) . Their transform product is R(s)T(s) whose inverse

transform gives a possible output y(t) . For example, if R(s) = 2/s, then

-bt -at
v(t) = LR(s)T(s) &2 4 2o _Cbe D5y gy
(3.5)
a+b=K, ab=E.
Substitute y(t) into Eq. (3.3) and solve for
-at _ _-bt
Bx(t) = 22{e = ) 4 apusiu(e) 12 (0], (3.6)

Next find P(s) = x(:) . Actually, it is easier to Find F'EET:%!(%)T with

Y(s) = 2E/s(s2+Fs +E) ,

_ ab h 4(s+a+b) 52-+3s(a+b)-+2(az+3ab+b2)
BX(s) = w2y (o * A[? " Ts+a) (s+b) [s+2a) (s+2b) (s+a+b) (3.7)

The above gives a set {P(s)}, by letting a, b, A, 8, k‘, etc.
range over their permissible values. The process is repeated by taking
r(t) = kzte-c‘t , giving in the same manner another set of P{s) . The union
of the two sets gives the total P set. Thereafter, the design procedure

is entirely the same as for an uncertain linear time-invariant P set--as

briefly described in Section 2.4 and in much more detail in [7]. The

objective i5 o find F(s), G(s) in Fig. 3-la, such that the system transfer

function satisfies the frequency-domain tolerances given by (3.4), for all




. 2. y " - - :
T - . C o
" A

' [ U S N

P(s) ¢ P . This is completely a !inear time invariant design problem. |If

it is solvable, then the same F{s), G(s) are guaranteed to work for the

original uncertain nonlinear plant probiem. In this case it is certainly

solvable.

3.3.3 A Condition for Guaranteed Solvability of the Linear Time !nvariant

tquivalent (LTIE) Problem

If the LTIE set P = {P{s)} is minimum-phase then the LT!E problem is
solvable. Now P(s) = Y(s)/X{(s) with x(t) = w-l[y(t)] in the notation
of Section 3.1. Zeros of P(s) are the zeros of Y(s) (those uncancelled
5y X{s)) and poles (uncancelled) of X(s) . I|f the command input is
minimum-phase, then the OK output set A can be prescribed minimum-phase,
50 Y(s) has no right half-plane zeros. The condition then is that X(s)
has no right half-plane poles, i.e. the nlant input is '"stable."

Consider a nonlinear plant described by a differential equation of the
form N'y'= N2x with Nl ,N2 nonlinear differential operators. it is
assumed y(t) Es 'stable' and so is Ny . For example all N,y of the

]
form £f (y) & with £ (y) bounded will give "stable" Nyy . So the
dt

oroblem.is the stability of x in Nox = p(t) with y(t) = Ny known and
"stable''. For example, if Npx = x - x (linear in this case), then the 1
plant is nonminimum-phase, as it would be even if le was linear time-

invariant. The above gives a relatively simple means for determining whether

the LTIE plant set is minimum-phase, a concept which is now also meaningful

e

in nonlinear feedback design.

-~
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3.3.4 System Response to Other Inputs

it is important to emphasize that the desired performance can be
guaranteed only for those system fnputs which were explicitly listed and
considered in the design. Thus, in the example of this section, what can
be said of an input r(t) = 5t ? Apriori not very much, because it was not
in the list for which the ELTI| plant set was found. We could however, check
if the closed-loop system will behave like a T(s) satisfying (3.4) to
such an input, as follows.

Let Y(s) = R(s)T(s), with R(s) = 5/s2 in this case and T(s) of
(3.4). Solve (3.3) for x(t) and find P(s) = Y(s)/X(s) . If P(s) €P
the set previously obtained, then indeed the system behaves like T(s) to
this input too. However, if ramps of a certain size are indeed typical
inputs, then it would be a good idea to include them at the outset in the set
of r(t), for which the design is explicitly made. In any significant
problem (such as the flight control one described in Chapter 4), one must
prepare a cemputer program for solving the nonlinear plant equation backwards
for the input x(t), given the output y(t) . A computer program is also
prepared fer finding Y(s) = T(s)R(s) . It is then a simple matter to err
on the safe side and let the set {r(t)} include all conceivable realistic
inputs.

In the preceding, only system command inputs r{t) in Figure 3-la were
considered. But disturbance inputs dl and/or d, in Figure 3-1a are
similarly treated. One must assign acceptable output sets in response to
the disturbances, in the same manner as the set {r(t)} . This gives a set
of acceptable outputs {yd(t)} , due to the disturbances. The corresponding

plant inputs and LTIE plant set are found in the same manner. An example
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in which both command and distrubance inputs were thus considered is given
in [12]. iIncidentally, it has been shown [4] that the design is not sensitive

to the inputs, i.e., significant deviations from the r(t) for which the

design was made, will have small effect on the T(s) presented by the
system. The design can be executed such that noninfinitesimal changes in
each r(t) give a T(s) within the acceptable set. This has been verified

in all our design examples.

3.4 Extensions of the Nonlinear Design Technique.

There are quite a few significant extensions, briefly noted here. One
' is to nonlinear closed-loop synthesis, i.e. the closed-loop system can be
designed to be nonlinear and quantitatively so. For example, it may be

desirable to have the plant operate close to its saturated value nearly all

. the time, in order to have fastest possible response, say to step functions.

The OK response sets may then be as shown in Fic. 3-2. Note that in a linear

Figure 3-2. Acceptable output sets of a nonlinear system nature, for
o responses to steps of 1, 2, 4.
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system the 0K response set for a step input of magnitude 2 must be twice

that for a step input of 1. This is not so in Fig. 3-2. For any step input }

in a specified range, the output is required to climb at the same (saturated)

rate until it is close to the final commanded value. F in Figure 3-1 then

L emerges nonlinear. A design example of this kind is described in detail in

[12]. Another such nonlinear closed-loop design philosophy may be applicable

to flight control. In a fast maneuvering situation, the command inputs
are fast and large, and it is desired to command acceleration while in a
tracking mode, the command inputs are slow, and it is desired to command
pitch. One could pose typical inputs of the first kind and define the
desired acceptable set and repeat for inputs of the second kind. The design
technique can handle this kind of situation -- even with the plant nonlinear
and uncertain, of course.

The plant can be linear or nonlinear time-varying and uncertain, e.g.

A+ e Ot (H+je Bt

g+ LAy + O = Kk + e HSINVE3 (3.8)

with say uncertainties E ¢ [1,5], G e [2,4], o€ (1,2], etc. The closed-

loop system can be designed to be linear time invariant, linear time-varying,

nonlinear time invariant or nonlinear time-varying. If linear time-varying
then F, G in Figure 3-1 emerge linear time-varying. |f nonlinear time-
varying, F is nonlinear time-varying, G linear time-varying. One example

of a highly uncertain nonlinear, time-varying plant but with linear time
invariant closed loop specifications, is given in [4]. Another example with
a linear time-varying uncertain plant and I1ti closed-loop specifications is
given in [3].

Another extension is to single input-output multiple-loop systems of

the kind described in Chapter 2, but excluding the plant modification structure.




Consider Figure 2-10, with nonlinear WpaWo oo replacing PI’PZ""

1f c(t) is known (a member of the OK set), one can solve the nonlinear
equations backwards to find cz(t) , c3(t) , etc. Then C(s)/CZ(s) =P,
the 1ti equivalent of W ,Cz(s)/C3(s) = P, the equivalent of w, etc.
A set of each is generated and the result is a multiple-loop Iti problem
solvable by the methods of [19]. The resulting Iti design works for the
nonlinear uncertain plant set.

Another extension being currently researched is for the case of non-
minimum=-phase system inputs. Nonminimum~phase 0K output sets must then be postu-

lated, leading to 1ti plant equivalents which may have both zeros and poles

‘in the right half-ptane. It appears that in the resulting Iti design, there

can be zeros of 1+L(s) in the right half-plane, where L(s) is the Iti
squivalent loop transmission. In a real 1ti system this would give an
unstable system, but it need not be so in a 1ti equivalent system. This

research has not as yet been completed.

3.5 Comparison with Other Synthesis Technigues

There are no other techniques which cope directly with the quantitative
synthesis problem described here, i.e. which guarantee outputs in the time
or freaquency domain, for apriori given uncertainty ranges of plant parameters,
even for linear time invariant plants. Optimal control theory is mostly
concerned with perfectly known plants. |If parameter uncertainty is considered,
it is usually done in a qualitative manner. And system performance is always
formulated by a scalar functional --a single real number which is usually
a quadratic function of the state and control variables. In most control

problems, one is vitally interested in transient response, which is a function

of time, not a scalar Functional. Often systems which are optimal for the
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quadratically based functional, have very poor (large overshoot) in their
time response.

in the last decade, modern control theory has concentrated on state-
variable feedback, use of observers, etc. for realizing desired system
eigenvalues. Again, plant uncertainty has until recently, been completely
neglected. Lately there has been a great deal of work on ''robustness',
mainly with the problem of stability for small enough parameter variations,
or for disastrous failures o' some components. This is a very welcome
improvement in the realism ¢f modern control theory. However, it has very
far to go as yet. The role of loop bandwidth, or its time-domain equivalent
of speed of loop response, is still not appreciated. The system performance
is still judged by a scalar functidnal. This laudable attempt at realism
in control of uncertain systems, is being handicapped by the mathematical
formulations and techniques used. These were natural and sensible in
optimal control of perfectly known plants, which is basically an open-loop
problem. They are unnatural and opaque for quantitative synthesis of highly
uncertain systems.

At the present time, any other synthesis technique applied to the
quantitative problem formulated here, must proceed by cut and try. It is
not even possible for any of them to declare apriori whether a specific
quantitative performance specification set can be satisfied or not, even for
1ti problems. It is possible to do so with the techniques presented here,
even for nonlinear time-varying problems. The next chapter presents a
detailed application of the nonlinear technique to the longitudinal flight

control problem, based on a simplified but highly nonlinear plant model.
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CHAPTER 4

LR E R I T s X

FLIGHT CONTROL DESIGN BASED ON

NONLINEAR MODEL WITH UNCERTAIN PARAMETERS

4.1 Statement of Problem

In this chapter, the breakthrough of Chapter 3 is applied to a signi-
ficantly nonlinear model of the short-period longitudinal flight control

problem.

Nonlinear plant model (see Table of Symbols)

pVOS

0= qu + g cos 6 - — [CNa(a) + CNG(“)G] (4.1)

. pVOSC c
f=q= T [Cmé(a)é + CMa(u) + 5T ¢ (a)q],
[ Y 0 m

o = tan v (k.2, 3)

The control input is the elevator angle 6, and the output variable to

be controlled is [24],

*

K =12.4 8+ 9—‘3 (i - Vpb + 66) (k. 4)

The feedback structure used is shown in Fig. 4-1 with c* =w(s) .
The numbers used in Equations (4.1-4) are [25,26] Iy = 207,000kgn@ ,
m=17,000kg, C = 4.89 meters, S = 49.2 me. The Cij(a) are nonlinear
functions of o, see Fig. 2-2. Since o (Fig. 4-8) ranges in [0,35°],

there is strong nonlinear operation. The horizontal velocity v was taken

' , as V0 fixed, which is incorrect for some low-velocity cases, but the

.
objective here is to demonstrate the validity of the design technique in a
strongly nonlinear situation, which is achieved sufficiently by means of H
PR a
. ‘o the nonlinear .. (a) . ¢

ij
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The bounds on the acceptable c*(t) in response to a unit step
command are included in Fig. 4-7, which also include design simulation
results. The set of command inputs R consists of steps | to 5 in
magnitude. Parameter uncertainty is due to p ranging in [.3 , 1.22]
and V, in [75,206]. Initial conditions are w(0) = q(0) = q(0) =0,
a(0) = 6(0), giving initial values for & (as well as u, 0, a) which
is subtracted out so that the change in § 1is used to find the Tti
equivalent P set. The detailed steps in the design implementation are

next presented, with comments postposed to the end.

4.2 Design Execution

4.2.1 The linear time invariant (1ti) equivalent set P

Let Ic*(t) 4 C*(s) = T(s)R(s) , where T(s) is the equivalent
system transfer function presented by the closed-loop system of Fig. 4-1.
Here R(s) = k/s with k € [1,5], while it is required that T(s) ¢ T,
a set derived from the bounds in Fig. 4-7. A simple means for generating
T, taken from [25], is to let T(s) = az(si-2.9)/2.9(524-2;as*»a2), 4
ranging in {3.7,1.5), a in [2.14,7.6], giving the bounds or |T{(jw)|
in Fig. 4-3. Such bounds suffice [7] for mp (and obviously statle)

T(s} . Any T(s), F(s) pair thus generates an acceptatle c*(t) . b
computer program soivec Egs. (4.1-4) backwards for &(t) anc ther checked
the result by sclving Eqs. (4.1-4) forwards for c*(t) from &(1) . The
program was considere¢ adequate only when excellent agreement was obtained
over the entire range considered. C*(s) was a priori avaiiable and

*

a(jw) & [8(t}], ~was obtained by numerical integration. As ¢ is a

Jw
short-period criterion and for all the acceptable cases has definitely
reached steady-state ir 4 seconds (see Figs. 4-7), Eqs. (4.1-4) were sclved

oniy for t ¢ [C,L seconds], and the constant 6(4) was used for t > &k .

=49~




D

‘ubysap uy pasn | (mf)g] ¢ | (mf)4]

(sdJa)
0,0] Ol

Ulewop-3awi3 wWosy paAlJLap _Aamvh_ Uo spunoq ujewop Asuanbaugy

jo siold apog “spunoq

- M)

Ty eanbig

»

(™)L NO
sannog

191

-50-




\ Lloci of six P(jw) are shown in Fig. 4-4, two of them (e,f) unstable
with a pair of right half-plane poles, which are zeros of A(s) . The set
includes a large number of such unstable 1ti P(s), which the design

technique can easily handle.

Plant templates. At any w say w = the set {P(jw)}, PeP

I 4
consists of a region in the logarithmic complex plant (Nichols chart)

denoted as the w;-plant template Tp(m]) . A number of Tp(w) are shown
in Figs. 4-5a to f. At very small w there are two almost constant angle

sub-templates 360° apart. This is due to the presence of both stable and

\ unstable P € P, and the fact that Arg P near w=0 is either 0
or nm/2 for some integer n . As w increases, the two groups merge
together and approach a single vertical line at large « well beyond the

T plant '"dynamics'' (w = 12 is large enough in this case, see Fig. 4-5f).

Note how this frequency response approach is indifferent to system order.

4.2.2 Design of G(s), F(s)

Given the set P = {P}, the problem is to find F(s) ,G(s) in
Fig. 4-1 such that the system transfer function T(jw) = FGP/(1+GP) ¢ T,
for all P e P . One may program the computer to find the (unique) bounds
B(w) on G(jw), so that as P ranges over P, A In|T(ju)| =

b in| 7o | < (A ) - A (] db of Fig. 4=3. Alternatively, this may

1+
be done by hand, giving useful insight as explained in Section 2.4.3,
Figure 2-4.

Fig. 4-6 shows the bounds so obtained on G(jw) , and the G(jw)

chosen to satisfy these bounds. Let g be the excess of poles over zeros
e
assigned to G(s), so that as s »~, G + kg/s G | It is reasonable to

define the optimum G as that which satisfies its bounds with minimum kG .
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Figure 4-4. Loci of typical 1ti P(jw) . Cases e,f are open-loop unstable.
k & wn VO P Gmax o‘max
(a) 1 1.0 3.77 180 .36 6.3 16.4
(b) 2 1.9 3.77 100 1.05 1.0 23.5
{c) 4 45 5.66 120 1.05 18.6 29.3
(d) 4 45 5.66 17 1.05 22.4 31.3
i (e) b 1.0 3.77 230 .36 13.8 27.0
/ (F) 3 .92 7.5 180 .36 27.4 34.2
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Figure 4-6. Bounds B(w) on G6{jw) and G(jw) chosen.
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It has been shown [11] that Gopt lies on B(w) at all w and that Gopt
exists and is unique. The design of a practical G(s) to satisfy the
bounds is somewhat of an art [7]. For a given skill in the art, the greater
the number of poles and zeros of G, the closer one can get to the optimum,
so there is trade-off between complexity and bandwidth. Here, we chose
simply by cut and try G(s) = (1+.2s)/s(1+ .03352)(1 +.002s + lo-hsz)

with very modest bandwidth, Figs. 4-3, 6. A much simpler G(s) could have
been chosen with larger bandwidth. The designer must make his own trade-

off. Ref. 7 offers some advice on the shaping of a function to satisfy

a set {B(w)] in the Nichols chart.

Design of F(s). G(s) only guarantees that A|T(jw}| < Az(w)'-Al(w) of
Fig. b-3, e.g., at w = 10, the actual change in |[L(j10)/(1+L(j10))]| is
from -7 db to 4 db, while from Fig. 4-3, the permitted change in
[T(jro}! = {FL/(1+L)] is from -15 to 2.8 db . Hence, any value of
[F(j10)| € [-8,-1.2 db] is acceptable. In this way, upper and lower
bounds on |F(jw)| are obtained and F(s) is chosen to satisfy them,
which is also somewhat of an art. In this example, a satisfactory

F(s) = (1+.33s) (1+.055)/ (1 +.255) (1 +.25) (1 +.0125s)%, see Fig. 4-3.

4.2.3 Design Simulation

The nonlinear system was simulated and its response found for several
hundred command inputs and gust disturbances. Typical (68) responses
to c* step commands are shown in Fig. 4-7 a to h for various combinations
of VO’ ¢ and step (k) values. The transient response of af(t), 5(t)
etc., depend, of course, on the values of k, p, Vo . Two sets of these

are shown in Figs. 4-8 a, b, with Fig. 8a depicting very large af(t)

excursion, for which the Cij(a) in Fig. 4-2 are in strongly nonlinear

-57=

[—————

pmp——r—




- e e

O-0-6-O-O-0-0-O-O0-8-0-6-0-0-0-06 66-06-6-8
0003660000000 0000060600600

v0=-200.0 RO-=0.859
V0=200.0 RD=0.721
v0=200.0 RO-0.605
v0=200.0 RD=0.508
v0=200.0 RO=0.426
v0=200.0 RO=0.358
v0-=200.0 RD=0.300
V0=176.9 RAD=1.220
v0=176.9 RD=1.024

o]

—~ N W s Ny D®
59 8" 6p 88 S8 ss s o8 O

XK’(KT’CXXK
i

[
OO O0OO0O0OLOOOOC

av 9 ow oo on on "R T e 8w e

at A Y 3 1. 1 e - “e M W M WD Ve W e -
1 o ReeolD

' 123456789

N

W)
e
2
-

L.X-2-2. o X 2.2 2.2 2. 2. 2.2 2 2. 2.2 2.2 2. 2]

: 0 VvO=108.3 RO=1.024
8: .0 V0=108.3 R0O=0.859

: 0 Vv0=-108.3 RO=0.721

: 0 V0-95.8 RO=1.220
$ k=2.0 V0=95.8 R0O=1.024
¢ k=2,0 V0=95.8 R0O=0.859
V0=84.8 RDa1,220
2% X=1,0 Vv02200.0 RO=1.220

13 K=140 V02200.0 ROal.024

L
X X X X
1l
NN NN
L]

s _am oem e sw sw enolg YRIED |
w !
=
U
P
o

e Wa R e e e -gm.ﬁmscfu(-:ﬁuuun

Figures 4-7 a, b. Simulation results. Response to step

*
" command of ¢ , magnitude K.
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ranges, These are the inputs for which the system was designed, and for
which guarantees can be made. Out of the several hundred cases simulated

in a very few cases (Fig. 4-7 h), there was very slight excursion out of

3 the bounds. It is possible to include in the design other inputs and gust

disturbances, with specified response tolerances - and then guarantees

can be made for these as well. The response to other inputs is nevertheless
found here to be also quite satisfactory. This is typical of the design,
i.e., the system is not very sharply tuned to the class of inputs used in

the design execution. There is reasonable response continuity to other

inputs.

% R
Some responses to very large c¢ step commands causing hard

. saturation are shown in Fig. 4-9 a, b. Response to Gust Disturbances.
The gust input was modelled by replacing 2 in (4.3) by a = l:an_l ﬁL + 0 .
0 gust
Two kinds of agust were used. In one agust is a half-sine wave of
ampli tude 20/V0 radians and half-period THALF ¢ [.2,2]sec . Some
@ results are shown in Figs. 4-10 a to ¢c. in (a) the gust begins precisely

%
at the instant of application of simultaneous ¢ step commands. The
second kind in Fig. 4-11 a-d, is stochastic guassian with power spectrum

2 and (a ) = 6/V

2
k/(1 +uw )VO gust’ rms 0

radians. Examples of responses to a

single square wave ¢ command with equal positive and negative values k

and total duration 2 THALF are shown in Fig. 412 a to c.
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Figure 4-12 a-c. Simulation results: response to a single

square wave ¢ command with equal positive

and negative +K values and total duration 2THALF.
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4.3 Discussion

A second-order modei was used for T(s) with excess of poles over
zeros e; = 1, in Step 1. This appears to be incompatible with G, F
fifth order and excesses e = L, eg =2, and P (no analytical expression
but linearized (4.1-4) give second-order P) with ep = 0 . Strict design
execution appears to require a T(s) of complexity compatible with
T=FGP/(1+GP) . Note, however, that in Step 1, the model of T(s) is
used only to generate a set which covers the range of a priori specified
acceptable outputs. Any T(s) model which achieves this is clearly
satisfactory, and the simpler the better. The designer can later choose
the complexity of G{(s), F(s), with no regard for that of the T(s)
model used in Step 1.

The class of applicable nonlinearities has been defined implicitly in
Ref. 4, but one very large class can be defined explicitly. Let
Dly(t) = sz(t) with 0,, D, operators which may be nonlinear, uncertain

and time-varying, e.qg.

A+Bte Ot

MmN D : *2 1N 2
Dyy = M(F)(y)7san y + = —  Yolv]" + Hy

Ee (1,5, Fe (5,41, Ae [-3,6], ace [.5,1.5]

Be [-3,2], He [-4,1], ne [.5,2], Me [1,5] .

The range off M must be of the same sign. All OK y and D]y must be
bounded for a!'t t in [0,] and D,y must exist. Hence y must be
twice differentiable except, at most, at a countable number of points.
Then D'y é Y(t) is known and there must exist a unique solution for x
in Dyx = y(t) . The solution must be bounded for all t e [0,o] . Thus,

A

O,x = (t; must be ""bounded-input, bounded-output' stable. However,

v,2'ti = »(t) may be "unstable' in that a bounded v(t) is allowed to
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} result in unbounded z(t) . It is only necessary that bounded 2z(t) gives
bounded v(t) .
It is possible that a simple linearization might do just as well in

practice, but this is a matter of chance, whereas this design technique is

guaranteed to work if the constraints are satisfied.

The constraint on W that P is mp, is required because only then
can one guarantee that any specifications no matter how narrow (Az"AI i
arbitrarily small but nonzero in Fig. 4-3), may be satisfied for arbitrarily
large but bounded parameter uncertainty (but some parameters must not change ;

] sign [23]). No such guarantee can be made for nmp P, but the probliem !

is still solvable if the specifications are not too narrow and P is not

too large [i11] a set. i

TR A e L ey
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CHAPTER 5

A SECOND BREAKTHROUGH 1IN

QUANTITATIVE FEEDBACK SYNTHESIS

5.1 The Muliple Input-Output (mio) Problem

A very large number of control problems involve multiple inputs and
outputs, with each control input affecting all the output variables to some
extent. This is certainly so in many flight control modes. In the n xn
case, there is a matrix of n2 system response functions to realize. In
realistic control, the n x n plant matrix has significantly uncertain
parameters. The real control problem is a quantitative one: to satisfy
specified Zn2 tolerance sets on the an response functions (n2 to

. command inputs and n2 to disturbance inputs), despite the specified uncer-
tainties in the parameters of the n x n plant relations.

There is a vast literature on this mio (often denoted as '"multivariable')
problem. However, nearly all of it deals with assumed perfectly known
plants, so the problem treated is securing the desired closed loop response,
under the constraint of a feedback structure around the perfectly known
plant. Just as in the single input-output case, the quantitative aspects --
the extent of the plant uncertainties and the performance tolerances (i.e.,
the very reasons for using feedback) -- do not enter as design parameters.
Stabitization of the resulting highly multiple-loop system is considered
a major undertaking. But note that this is being done for a perfectly
known plant matrix. Consider how much more difficult is this stabilization

2

problem when the parameters of the n plant functions have considerable

uncertainty -- not 10% or 20%, but hundreds or thousands per cent. Furthermore,

T\ -73"




such stabilizacion is only one part of the problem in genuine quantitative
synthesis. Stabilization is insufficient, for one must also guarantee that

each of the an

closed loop input-output functions satisfy specified
tolerances, over the range of plant parameter uncertainty.

Thus, the guantitative Iti mio problem with large uncertainty has long
appeared to be intractable, except by cut and try. There has recently
appeared, however, an exact synthesis technique for this problem [23;
Appendix | of this report]. A highly attractive feature of this technique
is that for the n x n case, it consists of designing n distinct,
separate, noninteracting loop transmission functions and n2 prefilter
functions of the F type in Figure 3-la. Thus, the n x n problem is
broken up into a number of separate single-loop problems. The interaction
between them is that of specifications. The tolerances on the output of one
of the single-loop problems, appear as ''disturbances'' in a different one.

It may be worthwhile to deliberately tighten the specifications on some of
the outputs, and thereby decrease some loop bandwidths needed, without
increasing any others. Sometimes there is trade-off, in that such tightening
decreases some but increases others. However, these do not affect the basic
isolation and noninteraction of the separate single-loop designs. They
affect the optimality of the designs in terms of loop-bandwidths needed to

do the job.

The above is a very desirable property of the design technique. The
stabilization of a feedback system containing a highly interacting, highly
uncertain n x n Iti plant becomes one of stabilizing n distinct, separate,
noninteracting single loops. But even more than that -- the quantitative
synthesis problem is solved. The apriori assigned performance specifications

on the 2n2 response functions are achieved over the entire range of
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parameter uncertainty. There is no need for design iteration after the
separate single input-output systems have been designed. This is for
minimum-phase plants. In the nonminimum~phase case, the performance tolerances
must be compatible with the nonminimum-phase character of the plant, just as

in single input-output systems. The research work leading to the above

results was performed under AFOSR sponsorship [23], but because of its
importance in flight control, is reproduced here as Appendix 1. Since then

we have gained some experience with the technique and learned how to achieve

the trade-offs mentioned above.

5.2 Extension to Nonlinear Uncertain Multiple Input-Output Plants

The nonlinear design philosophy of Chapter 4 can be combined with that
of Section 5.1, giving a quantitative synthesis technique for highly uncertain
nonlinear n x n multiple input-output plants. The essential features of
both synthesis methods are retained. Because of uncertainty, there is not
one set of n x n nonlinear plant relations, but an infinite class of such
sets. This class W is replaced by an infinite class P of n x n matrices
of linear time invariant relations. P is equivalent to W with respect to
the sets of acceptable outputs. To do this the nonlinear relations must be
solved backwards to find the plant inputs required to give the acceptable
outputs. The computer is an essential tool. Once P is available, the
problem becomes a quantitative linear time-invariant multiple input-output
one, for which the technique of Appendix | may be used. Section 5 of

Appendix 1 presents a somewhat more detailed outline of the procedure.
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5.3 Application of Nonlinear and Multivariable Synthesis Techniques to

Flight Control

in many of the important operating modes, the flight control problem is
primarily one of regulation and control despite large uncertainty. It is
one of achieving desired trajectories as a function of time. It is not one
of minimizing some quadratic functional of states and control inputs. In
fact, in certain situations one wants to drive the control variables as hard
as possible. The justification nevertheless for use of optimal control
despite this and despite its ignoring parameter uncertainty and performance
specifications, is only that it provides a trial solution. But it is clearly
not a synthesis tool developed for the flight control problem. On the other
hand, the quantitative synthesis techniques outlined in Chapters 2, 3, 5
and illustrated in Chapter 4 for a detailed nonlinear problem, are very close,
almost tailored, to the flight control problem. For the first time in
feedback control history, there are available precise rigorous synthesis
techniques to cope simultaneously with all the following important factors
in the flight control problem:
1. time and frequence domain tolerances on the output variables;
2. large parameter uncertainties;
3. highly nonlinear plant relations;
k. strongly interacting multiple input-output plants;

5. tolerances which are functions of the command inputs, i.e., a desired

nonlinear closed-loop system.
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QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE
INPUT-OUTPUT FEEDBACK SYSTEM+

*
Isaac Horowitz

ABSTRACT

There is given an n input, n output plant with a specified range of
parameter uncertainty and specified tolerances on the n2 system response to
command functions and the n2 response to disturbance functions. It is shown
how Schauder's fixed point theorem may be used to generate a variety of
synthesis techniques, for a large class of such plants. The design guarantees
the specifications are satisfied over the range of parameter uncertainty. An
attractive property is that design execution is that of successive single-
loop designs, with no interaction between them and no iteration necessary.
Stability over the range of parameter uncertainty is automatically included.

By an additional use of Schauder's theorem, these same synthesis
techniques can be rigorously used for quantitative design in the same sense
as above, for nxn uncertain nonlinear plants, even nonlinear time-var}ing

plants, in response to a finite number of inputs.
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QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE

INPUT-QUTPUT FEEDBACK SYSTEMS
1. INTRODUCTION

There is great interest in multiple input-output (mio) feedback systems,
for obvious reasons. A great deal of significant work (too numerous to list
but [1-10] are representative and include bibliographies) has been done,
primarily in the realization and properties of the closed-loop input-output
relations, under the constraint of a feedback structure around the known,
fixed mio "plant." There has been notable work done with uncertain inputs,
but again only with fixed, known plants. Of course, plant uncertainty is
always implicit, if only because of the usual approximations required to
obtain a Jinear time-invariant model.

In any case, there does not exist as yet any "quantitative synthesis"
technique for the mio problem with significant plant uncertainty, even for the
linear time-invariant case. By "quantitative synthesis" is meant that there
are given quantitative bounds on the plant uncertainty, and quantitative
tolerances on the acceptable closed-loop system response. The objective is
to find compensation functions which guarantee that the performance tolerances
are satisfied over the range of the plant uncertainty. In "quantitative
design,” one guarantees that the amount of feedback designed into the system
is such as to obtain the desired tolerances, over the given uncertainty range.
In other designs, the amount of feedback may be more or less than necessary--

it is a matter of chance. The practical experienced designer may find the -
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latter approach sufficient. However, a scientific theory of feedback should T

certainly include quantitative design techniques.

In this paper it is shown how Schauder's fixed point theorem can be
used to generate a variety of precise quantitative mio synthesis techniques

suitable for various problem classes. An outstanding feature of each synthesis § 1

F procedure is that it consists of a succession of direct (no iterations
necessary) single-loop design steps. Furthermore, by a second use of
Schauder's theorem, the techniques are rigorously applicable to quantitative

’ synthesis of nonlinear uncertain mio feedback systems. This paper concentrates

on existence proofs but a 2 x 2 example is included.

1.1 Preliminary Statement of a Linear Time Invariant MIO Problem

In Fig. 1, P = [p..(s)] is a n x n matrix of the plant transfer functions
iit>,

in the form of rational functions, each with an excess eij > 0 of poles over

zeros, and with a bounded number of poles. The pij(s) are functions of q

physical parameters, with m an ordered real g-tuple sample of their values.

M = {m} is the class of all possible parameter combinations. The elements of
the n x n 1ti compensation rational transfer function matrices F = [fij(s)]’
G = (gij(s)] are to be chosen practical (each with an excess of poles over
zero). They must ensure that in response to command inputs the closed-loop L i
transfer function matrix T = [tuv(s)] (of ¢ = Tr) in Fig. 1 where c, .r are the
n x 1 matrices (vectors) of system outputs and inputs, respectively, satisfy

conditions of the form

. 0 <A, (0) 5 [t (du)] s By, lw),¥ meH 1)
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If the tuv(s) have no poles or zeros in the right half-plane (are stable and

minimum-phase), then tuv(s) is completely determined by Ituv(jw)[, so (1)
suffices (Bode 1945). It has been shown (Horowitz 1976) that time-domain
tolerances of the form
uj(e) 5 S e
v=0,1, «.., ny any finite number, can be satisfied by means of tolerances
like (1) on [c(jw)|, where c(s) = Iz(t). The writer finds it much more
convenient to develop the synthesis theory in the frequency domain, and the
above proves its sufficiency for time-domain synthesis.
. : This presentation concentrates on the command response problem, but the

same ideas can be used to handle the quantitative disturbance response problem

under plant uncertainty, as will be shown in Sec. 6. The constraints on the
plant and the specifications are introduced as needed, in order to clarify the

reasons for their need.

2. DERIVATION OF SYNTHESIS TECHNIQUE

In Fig. 1, there are available n2 loop transfer functions in L =

[lij(s)] = PG, and n2 fij in F for satisfying the tolerances (1) on the n2

tij' But in the expansion of T = [tij(s)] = (1 + L)'jLF, each tab(s,m)

N (meM) is a function of all the Rij(s,m) each uncertain, resulting in very
complicated expressions for tab and making direct quantitative synthesis
seemingly impossible--at least so far unsuccessful. The objective here is
to convert each tab(s,m) design problem into an equivalent single-1oop problem

with uncertainty. This is done for each tab‘ by lumping all the other inter-
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acting tij variables into an ‘equivalent disturbance', as follows.

In Fig. 1, ¢ = PG(Fr - c), so

! + G)c = GFr. (2)

Hence, the following restriction on P:
(P1): a(s) ¢ determinant P(s) % O,VmeM.
, Let r # 0 and ry =0, i # v, so the resulting cj(s) = tjv(s)rv. Let

P = [Py 5(9)]. (3)

The uth element of (2) is then

Jtiy = g guifiv'

n
rv(s) igl (Pui + gui

To simplify the presentation, we take 9ui = 0 for u # i (although in practice

it may be useful not to do so). Then letting rv(s) = 1, the last equation can

be written as

1w
P uu uv
. uu uu 4 )
tuv ] 90 Tuv = Tduvuv (4a)
55— d
P '
d. = 7 P.t (4b) 3

uv ifu uil v

This corresponds precisely to the single-loop probiem of Fig. 2, with

T

)
| puve

(1) on Itivl are knowglgenerating a set Duv = {duv}. We define the extreme duv

= l/Puu. Of course, the tiv in duv of (4b) are not known but the bounds

_ sup
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Suppose we can find guu(s) and fuv(s), such that in the notation of (4,5)

0 < lryyl * lrguylldyyele [Ay Buv]’V meM (6)

Then the magnitude of the right side of (4a) e[Auv, Buv] for all meM and for

all possible combinations of t. (i # u) which satisfy (1). Suppose this is so

\/ u,v combinations, and the other Schauder conditions of Sec. 2.1 are
satisfied. Then Schauder's fixed point theorem can be used to prove that

these same n 9uu and n2 f. are a solution to the synthesis problem (1).

v

2.1 Application of Schauder's Fixed Point Theorem

This theorem states that a continuous mapping of a convex, compact set of
a Banach space into itself, has a fixed point (Kantorovich and Akilov 1964).
We define the Banach space to be the n2 C[0,»] product space denoted here by
C(nz), with norm = £ individual sup norms. C[0,»] is the Banach space of real
continuous “unctions f(w), wel[0,»] with [[f{| = sup [f(w)|. The convex compact
set in each of the n’ C[0,»] is taken as the accep?ab]e set of (tuv(jw)l satis-
fying (1), denoted by {he(w)} = Huv' Additional constraints have to be assigned
to the he (w) in order that each Huv set is compact and convex in C[0,»]. These
constraints have been justified in detaii in (Horowitz 1975) and are therefore

only summarized here. If each set is convex and compact in C[0,»], their n2

product set denoted by H(nz) is convex and compact in C(nz).

Constraints on Huv = {h(w)} v

1.3 continuous functions Auv(w), Buv(m) with properties of (1) as

bounds on h(w)
\. 2. h'(w) is uniformly bounded: I K, 3 In' ()} <K, ¥ h,w
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3. h(w)*0 as w in the form k/w®, e a fixed finite number 23 to allow
at least one excess of pole over zeros for the elements of F,G,P in Fig. 1.
These constraints guarantee (Horowitz 1975) that h(w) can be taken as the magni-
tude of a function G(S)s=jw which has no zeros or poles in the interior of
the right half-plane or on the jw axis. Arg ﬁ(jw) is obtained from h(w)
by anyone of a number of Bode integrals (Bode 1945).
2

An element of H(nz) consists of n” positive functions on [0,°], h, (w).

ik(
Using any appropriate Bode integral, find the associated phase function denoted

here by arg[hik(m)]. giving the minimum-phase stable function hik(s)’

%ik(jw) = hik(“) +j arg[hik(w)]. For future use, denote this sequence of
operations whereby h(w) is transformed into h(jw), as the "Bode transformation"

B(h(w)). Define ¢ on H(nz) by

= . 2 2
¢ (w]],wlz’ ---,wnn)- H(n ) - H(n )s wuv(h]]shlzy ey hnn)

Suufuv -i;u PuiB(hiv(w)) )
= 7

g
P (1 + 52
uu Puu

using for P . any specific fixed meM. (Note the similarity of (7) to (4a.b)).

’ Puu

In Appendix 2, it is shown that 9yu® f  can be found such that ¢ maps

uv
HCnZ) into itself. It is also necessary to prove ¢ is continuous, as follows.

¢ is 2 continuous mapping

¢ is continuous if each of its n2 components is continuous. The first step
in each mapping is B(hiv(uﬁ)= hiv(j“)‘ In (Horowitz 1975, Sec. III) it is proven

that the step hiv(w)+ arg hiv(w)éeiv(w) is continuous in the ¢{0,») norm. Hence,
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the mappings h'iv(“’)" hiv(“’) coseiv(w)éﬁiv(w), hw(m)-> hiv(“’) sin ew(m)
éXiv(w) are continuous. The denominator of (7) is a constant on H(nz), and

so are g fuv and the Pui in the numerator. Thus, the numerator has the form

Num. = [K, + 3K - E(C; + 300 @4 (w) + X (wh), § = VT,

all other terms real and only theﬁ%i, Xi mappings on H(nz). Infintesimal changes
iné{i, Xi clearly result in similar change in Num., so Num. is continuous on
H(nz) and so is each wuv of (7) and hence . The conditions in Schauder's theorem

are satisfied, so ¢ has a fixed point.

*
This means 3 a set of hij(“) denoted by hij(“)"a

[Susfov = 5, P bt (du)

uu uv ui'iv
b (w) = 174 (8)
uv g
. \ P (1 + 5!! ‘
uu uu
ko 5 *
u,v = 1, ..., n, where hiv(Jw} = (hiv(w))°
We would now like to deduce from (8), that
~%
* . uuuv "i;u Puifyy (3@) 0 ¢
B(h, () = ho (Ju) = - C
P (1 + 55—
uu Puu

For, if (9) is true, then by letting ﬁ:v(jm) = tuv(jm), we have recovered (4)

2 ﬁ:v(jw) are a solution to the mio problem for that specific meM.

and the n
The solution is unique if every building block in the mio system has a unique

output for any given input, which is a very reasonable condition. This makes
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it unnecessary to prove that there are no transitions from (8) to an

e b g R

expression similar to (9) but with right half plane poles and/or zeros. Since

m is any element of M, this is true for all meM (of course with a different
ke
set of huv for each m).
The step from (8) to (9) is a crucial one and must be justified with great
care. Given an analytic function ¢(s), there is an infinitude of y(s) such
[ that [¢(jw)] = |v(juw)|, w e[0,=], e.g.

(1= 1y8) (1 + 1,5)
¥(s) = o(s) O+ T]Sj'rj - 125)

But ¢(s) # v(s) even though [¢(jw)| = |w(jw)|. But suppose we know from other

sources that ¢](s) has no right half plane zeros or poles, then given

|¢](jw)| M(w) a magnitude function which is Bode transformable, we can
conclude that ¢1(jw) = B(M(w)) = ﬁ(jw). Hence, to justify (9) we must prove

that the expression inside the vertical bars in (8) has no right half-plane

zeros or poles. The pole part is easy, because 1 + guu/Puu is obviously

designed to have no right half-plane zeros; certainly 90’ f v won't be

u
assigned any such poles; ﬂiv(s) doesn't have any by definition, and Pui is not

allowed any such poles--see Sec. 3.1. To prove the zero part, note that from
(6) and Rouche's theorem, the number of zeros of the right side of (9) in the
right half-plane, equals such number of

uufuv
Suu,
Pua{l * Pou
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which is easily made zero in the single-loop synthesis steps (if Puu has no
right half-plane poles, a condition necessary for other reasons--see Sec. 3.1).
Thus, the expression inside the bars in (8) has no right half-plane poles or
zeros, justifying (9). This is a very valuable result. The problem of
stabilizing a highly uncertain n x n mio system is automatically disposed of in
the synthesis procedure, which is furthermore one of designing n single-loop
transmission functions.

It is worth noting that even if the above proof were not available, it
would not be disastrous for this synthesis theory. It would only be necessary
to guarantee that at one meM, the system is stable and minimum-phase. For
then, this would be soV’meM, because by the continuity of the poles (and zeros)
with respect to the parameters, the right side of (8) would have to be infinite
(zero) at some w, in order that for some meM the system should be unstable
(or have a right half-plane zero). However, the synthesis procedure by
definition precludes this. And it is a relatively easy matter to guarantee

the desired conditions at one meM.

3. CONSTRAINTS ON MIO PLANT

The above results hinge on our ability (a) to find 9uu and fuv to satisfy
(G)Vw, all u,v pairs and all megM (b) that each equivalent single-loop design
is stable and minimum-phase ¥ meM. These lead to constraints on the mio plant,
obtained by applying single-loop design theory to achieve (a,b). Appendix A
gives an existence theorem for single-loop design. The first part of the design
(see Appendix A3) gives bounds on the nominal loop transmission which is

] ' : | s 2 el .
guu/Puuo of (4a), where Puuo is the 'nominal' associated with a nominal meM-
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These bounds must be satisfied in order that a specific system transfer

function t,, satisfy (1). Here 9uu/P is used for n tuy (v=1,...,n)

uuo
functions. It is proven in A3, that a guu/P can be found which satisfies

uuo
the conditions for all n tuv functions.
For example, consider t atw = and suppose Aul(wl) = .9, Bul(wl) =
1.1 in (7). We could split this range [.9, 1.1] into say [.95, 1.05] for Tyl
and .05 for Tduldu] in (4), using du]e of (5) for du]‘ The technique in A3
or better (Horowitz and Sidi 1972), is then used to find a bound on guu(jw1)'

Here, we note a tough constraint. Sooner or later in w, Iguu(jw)l must become

very small with 1+ g /P . ~ 1 and then in (4a)

£ guufuv - duv (10)

uv uu

and in (7), by the numerator of its right side divided by Phu' Now (4a, 5, 6)

in general require that

[tyvImax > 2l7qyydyve! (1)
But ltuvlmax = B,, and at high frequencies
sup
| | M i;ulPuiHBivl
t,..d >
duv uve IPuulf

To see what this leads to take, for example, n = 2 so that the above applied

tov=1,u=1,2 gives

b 2Pl 2Ry I8y,
TPy 21 7 R, l
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requiring

41Py Pyl

1> as w + @
P11P22]

Thus, a constraint on P is

(13)

()i Ty 3 for v > upe [P1yPppl > 41P1gPp ek

It is known that as s » =,

so the above becomes

kiikapl  Alkipka]
epytey,  epptey
w &

If the uncertainties in the kij are independent and e t e, = e, + €1

this becomes

kHmink22min > 4k12maxk2]max’ (14)

There is an important problem class for which the inequality is less
harsh. This is the “"basically noninteracting" class, where one ideally desires

t

ij 0 for i # j, but because of uncertainty accepts Aij = 0, ltijl < Bij
for i # j, in (1). Also, one doesn't care if tij(i # j) is nonminimum-phase.
Condition (6) then applies only to u = v. The fuv (u # v) are set equal to

zero and (13) becomes

(15)

Ty 30 1PPoyl > 21P1Poq | meMy w > .
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It is desirable to ease inequality (13) in the general case. Note that (6)

can be satisfied over any finite w range by making [1 + guu/Puu' large enough.

Thus, as previously indicated, one can split the [Auv’Buv] tolerance so that

Ituvl > Irduv, uve' ‘,IHEM e.g. assign Ir | e [E- e, E+ €] with

E = (A + B )/2, 2¢ < Buv - Auv and the balance (Buv - Auv - 2¢)/2 is assigned to
Tquvduy of (4a) But |1 + guu[Puul must then be made large enough to satisfy

the resulting requirements, and it can for any finite w range. The trouble is

that g,y Must be allowed to » zero as w + =, leading to (13), etc., if we

insist on (6). We could ignore (6) at large w, say for w > wys With wy as

large as desired but finite, letting Iruvl << Jrguylldyye! for o > wy- Then
for w > Wy (11) is replaced by the weaker

It |m;x > ITduv uvel (16)
and for n = 2, (13) is then replaced by

(pr); 3 wp s S for w > Wy IP“P22| > IP]ZPZ]I’VmeM (17a)

An important question is whether (17a) is an inherent basic constraint in the
presence of uncertainty, no matter what design technique is used, or is due
only to this specific design technique. The methods suggested in (Rosenbrock
1974, Owens 1978) to achieve diagonal dominance, may be helpful in satisfying
(17a), but they would have to be extended to uncertain plants. Note that in
Rosenbrock 1974, Owens 1978), diagonal dominance is desired ¥ w e [0,»),
whereas in (PZb) it is required only for w > w,.

For the analog of (17a) at n = 3, it is found that diagonal row dominance
1

of P~ for w > Wy » is a sufficient condition. The necessary condition can be

written as
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P

3 Wy 3 for w > wy IPHPJ.JI > |pijpj1; and
IP]]P33| > (IP]2P23l + IP]3P22|)”P22P3]| + |P21P32|) (17b)

which can be written as,
1P11P22P 33l > 1P11PasPaal *+ 1P1oP1Pasl + IPyoPa3Pal

+ |PyaPogPyyl * [P13PorPapl  for w >y (17¢)

The latter has the following intepretation. Array the matrix P'] in the usual
manner, but twice -one under the other as in Fig. 3a. Then the terms on the
right side of (17c) consist of the products of the entries crossed by the

dashed lines.

However, if wy is so used, it is no longer possible to use Rouche's
theorem and thereby prove each tij is minimum-phase. But we can still design
so that the nominal tij are minimum-phase and we know from (6) that tij(j”) 0

for we[O,wH]. Therefore, from the continuity of the zeros of ti with respect

J
to the parameters of the system, if tij has any right half-plane zeros, they
must enter the right half-plane as shown in Fig. 3b. It is unlikely that such
a zero which must migrate all the way up to ij, should move back into the
significant control bandwith region A. The point is that if right half-plane
zeros are "far-off", they have little effect and the system is "dominantly"

minimum-phase.
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Rouche's theorem can still be used if we can guarantee that (6) is
satisfied for a semicircle consisting of the segment [-ij,ij] and the right
half-plane half-circumference of the circle of radius Wy s centered at the
origin. Then, there are definitely no right half-plane zeros of tij in this
half-circle, and the system is "dominantly" minimum-phase This is quite

practical in the design technique of (Horowitz and Sidi 1972), discussed in A3.

3.1 Modification of mapping ¢

Note that for the "dominantly minimum-phase” and the "basically noninter-
acting" cases, the application of Schauder's theorem in (2.1), Eqs. (7-9), etc.,

needs modification, because nonminimum-phase tuv(jm) cannot be uniquely
derived from Ituv(jw)l. Redefine h e H ., of 2.1 to consist of an ordered
pair: h(w) as before and q(w), the imaginary part of ﬁuv(jw) with
h = Iauv(jw)l; h e Huv the same as before but q{w) € C [0,) with
0 < |q(w)| < h{w). Constraints 2,3 in 2.1 on h{w) also apply to q(w). Let
(W), € c? [0,) denote the set {(h(w), q(w))} with |[(h,q)|| = [Ih[] + [laf]-
Obviously, (HQ)uv is compact and convex in C2 [0,). The extension to the
n2 product set is straightforward.

The mappings ¥, in (7) are redefined. Each Yuy js a pair of mappings,

one the absolute value as before, the second the imaginary part with the

absolute bars on the right removed. On the right side of (7), B(hiv(“)) is

2

. . 2
replaced by ry (w) + quv(w)’ with h%v = riy * a5 (hyys qiv) € (HQ)iv'

It is necessary to prove that ¢ maps each element of (HQ)uv into itself.
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The proof follows immediately from that for the minimum-phase case -- this
is obvious from (6), the definition of duve in (5), and Appendices 1,2. The
proof that ¢ is continuous is straightforward. Accordingly, the Schauder
conditions are satisfied and there exists a fixed point which satisfies the
specifications. Such specifications, by themselves, would not be good ones
because they permit highly nonminimum-phase tuv(s). However, they are
satisfactory if it is known from other sources that tuv is "dominantly

minimum-phase",

3.2 Additional Constraints on P

Constraints A1(1)-(3) in the Appendix, must be applied to the 1|Puu,
1

since in Fig. (2) Puve = F— = P of Appendix. Al.1 requires that there be
uu
no change in the excess of poles over zeros of ﬁl—-= ZAL' where A = det. P
uu uu

and L its uuth minor, as m ranges over M. Also, that for at least one
meM, denoted by Mo® Puu has all its poles and zeros in the interior of the
left half-plane. The Mo Can be different for each u.

A1.2 requires that 1/P  is minimum-phase ¥ meM, and its zeros do not
get arbitrarily close to the jw axis. Since 1/Puu = A/Auu, this means A must

have no right half-plane zeros. Hence the Pi‘ in general have no right

J
half-plane poles. (For those who wish it, P is restricted to be controllable
and observable V’mqn, but these concepts are unnecessary if P is properly
formulated in terms of physical uncertain parameters (Horowitz and Shaked
1975)). Since the pij in P = [pij] are finite rational functions, the latter

part of A1.2 is automatically satisfied.
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A1.3 for n = 2 is the same as (17), which shows that (17) is a

fundamental condition for linear time-invariant design, not an "extra"

condition due to our design technique, at least for n = 2. However, (13)
r is an "extra" condition. Note, the extension of single-loop design to
disappearing poles and zeros in A6 may perhaps permit disappearing poles

and zeros in the mio plant functions.

4. OTHER DESIGN EQUATIONS

The previous design equations constitute only one of many

design techniques derivable from Schauder's fixed point theorem. Only

two more will be briefly mentioned here.
Both are based on the use of a nominal diagonal Toop trans-

mission matrix. The design obligations on the loop transmission

elements are then independent of the way the plant input and output
terminals are numbered. If G is made diagonal, such numbering is
important and after one arbitrarily numbers the plant input terminals,
he should try to number the outputs such that the main effect of in-

put i is on output i. Manipulation of (2) somewhat differently from

Sec. 2, gives

L =PG
Foon, g6, + L2 Vit /o °o o
PO o B 1 b= [p..]
M1+ 2,./8 o'[ij
‘ 1" °n (18)
| £ v, .t../s8,,, etc.
R by, - Fortog/Sop * 4gp 2111722
1+ 222/622

. )

-
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where V = [vij] = IHQ#P)_], Po is the 'nominal'plant matrix and there-
fore fixed, P is the genera) uncertain plant matrix, aii =1 - vii' ]
The zii are the nominal elements of the loop transmission matrix L.

Eqs. (18) lend themselves to single-loop design and use of Schauder's

theorem, precisely as did Eqs. (4).
Another interesting set of design equations is obtained by de-

signing to control the changes in tij’ rather than tij directly. Let

T = [t

o ijo] be the 'nominal' system transfer matrix and T = [tij] the

actual which is uncertain, AT =[At1j] =T - To' Then it can be shown

that

o7 = (1) T, v = 12 R (19)

vihere 20, P are likewise the 'nominal' and uncertain plant transfer

matrices, and L = EOG = [Qij] is the nominal loop transmission matrix.

If L is taken diagonally, the result is (n + 2 for simplicity)

1t et
IR, ]+ 2

o mh2 " et
1 12 1+ Q1]

At

(20)

and similar obvi on f / .
vi0us es for At2], At22

The design problem is now completely one of disturbance

attenuation, with the disturbances d » etc., whose

1T Yt Vet
range is known. Schauder's theorem is applicable in the same manner
as before. Note that V represents the 'normalized' plant variation

matrix. Eqs. (20) appear to be much simpler to use for design (once
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the Atij tolerances are formulated) than (4), and their use needs to
be intensively researched. However, both for (18) and (20) the con-
straints considered in 3., leading to (11-15) must be found, and
these may possibly be tougher than before. Also, both a nominal P
and T must be choseanhich is not gooquecause the optimum pairing

is not apriori known. However, the analogs of (14,17) may be more lenient.

4.1 Bandwidth Minimization

An important criterion for comparison of design techniques is
their "cost of feedback," which we take as the bandwidths of the
loop transmission functions--because they determine the system
sensitivity to sensor noise. Obviously, quantitative synthesis
techniques must first be invented before one can turn to their op-
timization (for without such quantitative techniques comparison is
possible at best, by analysis after a specific numerical design has
been made). This approach via Schauder's theorem promises to generate

a variety of such techniques, and the next step will be optimization.

5. DESIGN EXAMPLE

The 2 x 2 plant elements are pij = kij/(]+SAij) with correlated
uncertainties, giving a total of 9 parameter sets in Table 1. The

design was performed to handle the convex combination generated by

these 9 sets (Figure 6).

- o w e




TABLE 1
k k k

No 1 22 12 21 11 22 12 21
i. 1 2 1 1 2 2 3
2. 1 2 .5 1 5 1 i 2
3. 1 2 .5 1 2 .4 5 1
4. 4 5 1 2 1 2 2 3
5. 4 5 1 2 5 1 1 2
6. 4 5 1 2 2 4 5 1
7. 10 8 2 4 1 2 2 2
8. 10 8 2 4 .5 1 1 2
9. 10 8 2 4 2 .4 5 ]

A "basically noninteracting" system is desired, with the off-diagonal
transmissions specified in the w-domain |t12(jw)|, |t21(jw)|<0.] Yw. The

diagonal t bounds are identical and were originally in the time-

1 2
domain in the form of tolerances on the unit step response shown in
Fig. 4a, b (which also shows the design results for those of the 9 cases
which were reasonably distinguishable). These time-domain bounds
were translated into the "equivalent" bounds on ‘tii(jw)l shown in
Fig. 5 (Horowitz and Sidi 1972, Krishnan and Cruickshank 1977).
Familiarity with quantitative single-loop design is assumed
here . One can do a problem of this complexity by hand. The

sets {p (Jw)}, called the plant templates, are obtained on the

Nichols chart. Some of these templates of P = A ]?
” P22 Pn
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are shown in Fig. 6 at various w values. The larger the template,
the greater uncertainty at that w value. The tolerances on tuu of

(4a) and Fig. 5 were divided between T and Tduuduu as discussed in

Sec. 2. Each of these, in conjunction with the templates, leads to

9
bounds on the nominal loop transmission 2u“o = Buu . Some of these

uuo
bounds on ziio’ due to 111, are shown as solid lines in Fig. 7, i.e.,

it is necessary for 2110 to Tie above the indicated boundary. The

tolerances on Tduuduu lead to the dashed line bounds on 2110.

attempt was made to optimize the division of the tolerances between

No

and rd]]d]]. The composite bound on % must satisfy both.

™ 10
The 2110(jw) chosen is also shown in Fig. 7. There was no attempt
made to optimize the ziio; the design was made by hand quickly, so
the ziio(jw) are larger than need be, with the tolerances therefore
satisfied better than necessary--as seen in Figs. 4a, b. Optimal
ziio(jw) would lie on their boundariesat each w, so in this

example there is considerable overdesign.

Here we took

_ 10 (1+.007s)
) M (1+.025s)[1+_s__ Y ]

+
400 (400)2

=99




8 .75 (1+3.665) |

P20 T (1+s)(143s)

o = A . _ 9 (1+.02s)
= — = = .
220 " P1yy 22 S (14 1q6) +s .2 :
-~ 150 (ISO)ZJ
with
A
o _ 1.5 (1+3.66s)
P'llo (1+3s)(1+2s)
The requirements on f]], f22 (1']2 = f21 =959y = 0 here) were

found using single-loop design technique [15]) as briefly explained

here in A4, and

S . R
i 7+ 8 f2°77 33
were found satisfactory. The system was simulated on the digital com-

puter with the results shown in Figs. 4a, b. The t tolerances

12 ta1
were easily satisfied by the design.

While this is not a very challenging example of the design techni-
que, nevertheless the uncertainty is very large and one should consider
how quick, simple and straightforward was the design procedure, and
also consider what alternatives are offered in the mio literature.
There are no other techniques available for systematic design to

specifications in the presence of significant uncertainty which

guarantee design convergence and attainment of design tolerances.
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Whatever present popular technique is used, it would be necessary

to cut and try and endeavor to understand the relations between the

cutting and the results as one continued to cut and try, because
these techniques have no provision for significant uncertainty. In
the above design, one sweep was known to be sufficient because the
plant and the design tolerances (w-domain) satisfied constraints,

Pl etc.

5. EXTENSION TO NONLINEAR UNCERTAIN MIO PLANTS

Once there is a quantitative design technique for linear time
invariant mio uncertain plants, it appears at least conceptually
possible to extend it to a significant class of nonlinear, even
nronlinear time-varying, uncertain mio plants. The procedure is a
generalization of that used (based also on Schauder's theorem)
in (Horowitz 1976) for single loop uncertain nonlinear systems.
The key feature is the replacement of the nonlinear plant matrix
set (a set because of the uncertainty), by a linear time invariant
i plant set which is precisely equivalent to the original nonlinear
set, with respect to the acceptable system output set. The pro-

cedure is briefly presented for the case where one wants the system

' with nonlinear uncertain plant to behave like a linear time-invariant

system for a specified class of command input sets.

LS
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It is essential that the command input sets represent a good
sampling of how the system will actually be used. For example, suppose
n = 3 and in actual use ST always exist simultaneously (with

= 0), and ry appears by itself (with Py = ry = 0). Say there are

L)
4

l"3 |
ten typical r](t) inputs and for each typical r](t) there are five
typical rz(t). This makes a subtotal of 50 input sets, to which is
added the number of typical r3(t) say 10, giving a class R = {F} of
60 sets, of which 50 have the form F = (r,, r,, 0) and ¥ = (0, 0, r,)
for the balance. Choose F]eR. The family of acceptable outputs for

this input, is known from the tolerances on tij’ giving for that one

input vector a family# = {h}, h = (h], h,s h The mio plant is re-

2’ 3)'
presented by a family (because of parameter uncertainty) W of nonlinear
differential mappings

W= (W}, w= (w],wz,w3)3c] = w](xz,xz,x3,m), R
w3(x],x2,x3,m), where the x; are the plant inputsaci the plant outputs,
and m is the plant parameter vector meM.

Take a sample acceptable outputtriple h = (n], h2, h3) and find

the corresponding plant inputs at some specific meM (or in other words,
pick a WeW) and let c; = hj and solve the nonlinear equations backwards,

giving the input set (x], X Take the Laplace transforms f}(s)

20 Xq)-
of X ﬁj(s) of hj giving the vectors x[s] = (x](s), xz(s), x3(s))

fitsl = (Ay(s), . . ., ﬁ3(s)). Repeat for other h samples in the

acceptable output set H, giving two paired families of R[s], ﬁj[s].
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Select any combination of three x[s], forming a 3 x 3 matrix X and
corresponding paired combination of three fitsl, forming the matrix'a.
Set H = PX and solve for P = ﬁ(ﬁ)'1. P is the linear-time-invariant
equivalent of the specific Well picked, with respect to the specific
trio of acceptable output vectors picked. Repeat over different
trios. Repeat the entire operation over different wel/, giving a

class P] = {P} which is the linear-time-invariant equivalent of the

W family, with respect to the class of acceptable outputs H for in-
put vector F]. Repeat the entire operation for ;2’ c e e FGO giving

{Tﬁ} =P which is the linear time equivalent for the nonlinear

total
W, with respect to the tribe of 60 families of acceptable output sets.
The equivalence is exact if the conditions for appiication of
Schauder's theorem are satisfied. We now have a linear time-invariant
uncertain mio problem, which let us presume we can solve. If and only
if we can guarantee the solution of the latter, then the same compen-
sation functions will work for the original nonlinear uncertain mio
plant. Hence the importance of quantitative linear time invariant
design techniques (over and above their intrinsic importance)--for they
enable the precise solution of nonlinear uncertainty problems.

The design effort in the above appears to be enormous but it is

conceptually straightforward and easy. An ordinary control engineer

can implement it and the digital computer is, of course, an essential
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tool. Conceptually too, it appears possible to extend the method to
obtain nonlinear relations between inputs and outputs within specified
bounds, despite large plant uncertainty, even nonlinear time-varying,
as can be done for the single input-output case. The prospect
ijs fascinating. Imagine being able to work with the actual nonlinear
equations of a jet engine, or a chemical process, etc., inciude un-
certainties in the modelling, even uncertainty in system order (see
Appendix), and designing to achieve outputs within specified tolerances

over the given range of uncertainty.

6. DISTURBANCE ATTENUATION

Let x in Fig. 1 be a nx 1 matrix of disturbances. The resulting
. -1 -
system output (with r = 0) is ¢ = (I+PG) ~ Px 8 Ix, 1 = [Zig]’ the nxn

disturbance response matrix. Bounds on Z are given in the form

|2, (dw)] < by, (@) Y mem

Rewrite ¢ = Zx in the form (P']+-G)c = X. Let x; # 0 only for i = v, so

. = 2. d
Cy = Zy Xy an

n "%

_u_ (0, u v
(P +gui)ziv =6, = (1, u v) i

ui

It =~ 3

i

u
(Puu+'guu)zuv =38, - ) (Pui+'gui)ziv

ifu
u
8y = L (Pui*9yilzyy
- ifu
9
Puu(l + ﬁ!! )
uu
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Let

P.+g.
A ui ui
(w) ® s;p I 1=y, () (23)

Xuve Uy
i#u

The gui(w) (i#u) can be chosen to minimize x . _(w), but for simplicity we shall

uve
assume them zero. From (22,23)

sY/P 4
Izuv(“’)'< | gxuvel (24)
(1+ 5%
uu

If 1/Puu satisfies the constraints listed, then it is obviously possible
to guarantee |zuv(w)| < any finite number, no matter how small, at any finite
w. Also it can be made zero at a finite number of w values by assigning poles
to 9 at these values. Assume that g,y can be chosen to satisfy (21)

\/ w € [0,2). Then one can set up the conditions for Schauder's theorem,
precisely as was done in 2.1. The set buv(w) must have been formulated such

that B(n), the n?

product set of the buv(w), is compact convex in C(nZ)J
analogous to H(n2) in 2.1. The analog of & in (7) must be formulated
with the modification of Sec. 3.1, inasmuch as we do not care if the zuv(s) are
nonminimum-phase.

Conditions analogous to (12-17) for n = 2, are obtained as follows.
As w + =, guu/Puu + 0 so in (24), the right side -+ its numerator. But
|z, (Ju)| < b, (w) of (21). Letu=1, v =2and thenu=2,v=1 and

obtain the necessary condition (for 912 = 921 = 0),
Asw> s Pigbyy < PPy V MR (25)
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similar to (17) but here only at =, because there is no concern with the
minimum-phase property. Settingu =v =1, and then u =v =2 in (24), we
; get the conditions

P12P1 _ ey,

1
As w >, byy > |g—| = |py7 - ———1s by, > |p (26)
n IPHI I 1 p22 22 22 pn

But in reality as w >, ¢ ~Px so Z + P and 213 > Pyys 222 7 Pop- Hence,
assignment of b., (as w » ) to satisfy (25) is no obstacle, because the buv(w)

are upper bounds on the Izuv(jw)l.
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Fig. 1 Multiple input-output two matrix degree-of-freedom feedback
structure ¢ = Tr, T = [tij]’ c = [c] cn]', r= [r.‘ e r].
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Fig. 2 Single-loop structure equivalent, for synthesis of tw;
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PLECIBELS

"Equivalent" frequency domain bounds and
experimental results for various plant
parameter sets
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Fig. 6. Templates of 31,5 A/f” > E = A/ﬁa.

at various frequencies, on Nichols Chart
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Fig. 7. Bounds on 2;4(Jw). Solid lines are due to ]1,1 !,
broken lines due to '7,'&1,“‘
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